Zitteliana	11	3-235	München,	ISSN 0373-9627
------------	----	-------	----------	----------------

The palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe

by

ANDREW L. A. JOHNSON*

with 213 text figures, 11 plates, 4 tables and 2 appendices

ABSTRACT

This work deals systematically with all the pectinids and propeamussiids that occur in the Jurassic of Europe apart from the genus Weyla and a suite of distinctive species largely confined to the Tithonian of Alpine and southern Europe. By applying a species concept in which all members of an evolving lineage are accorded the same specific name, 34 species are recognised (3 in the genus Propeamussium, 3 in the genus Entolium, 4 in the genus Pseudopecten, 5 in the genus Spondylopecten, 6 in the genus Chlamys and 7 in the genus Radulopecten). Each species is described, with the aid of biometric information, and its taxonomy is discussed in detail. Following this, stratigraphic and geographic range is described, the latter with the aid of maps (including pre-drift reconstructions for extra-European distribution). Sedimentary and faunal associations are set out and from this information an attempt is made to reconstruct palaeosynecology. Mode of life is inferred both by means of drawing analogies with living, morphologically similar species and through comparison with sets of morphological "paradigms" deduced for the various modes of life of scallops. In the section introducing the "paradigms" special attention is given to the likely function of shell plication. A concluding section for each species discusses origins and the rate and possible genetic basis of any phyletic changes.

KURZFASSUNG

Alle Pectiniden und Propeamussiiden, die im europäischen Jura vorkommen, werden in diesem Werk systematisch behandelt, abgesehen von einer Reihe besonderer Arten, die hauptsächlich im Tithon des alpinen und südeuropäischen Raumes vorkommen. Durch Verwendung eines Artbegriffes, wobei alle Mitglieder einer Abstammung als eine Art betrachtet werden, können 34 Arten anerkannt werden (3 in der Gattung Propeamussium, 3 in der Gattung Entolium, 4 in der Gattung Camptonectes, 3 in der Gattung Eopecten, 6 in der Gattung Chlamys, 7 in der Gattung Radulopecten). Jede Art wird beschrieben (mit Hilfe biometrischer Daten), und taxonomische Fragen werden gründlich diskutiert. Danach werden die stratigraphische und geographische Verbreitung diskutiert, im letzten Fall mit Hilfe von Karten (einschließlich paläokontinentaler Zusammenstellungen für Daten außerhalb Europas). Sedimentologische und faunistische Beziehungen werden beschrieben, worauf versucht wird, ein Bild der Paläosynökologie zusammenzustellen. Auf die Lebensweise wird nicht nur durch Analogie mit lebenden, morphologisch ähnlichen Formen geschlossen, sondern auch durch einen Vergleich mit "Paradigmen", die für jede der verschiedenen Lebensweisen bei Kammuscheln abgeleitet werden. In der Entwicklung von "Paradigmen" wird die Rolle der Berippung bei Kammuscheln besonders berücksichtigt. Für jede Art wird in einem zusammenfassenden Abschnitt der Ursprung, die Geschwindigkeit und die vermutliche genetische Basis für phyletische Veränderungen diskutiert.

^{*} Dr. Andrew L. A. JOHNSON, University of Leicester, Department of Geology, University Road, Leicester, LE1 7RH, England.

CONTENTS

Ι.	INTRODUCTION	11
	Species concept	11 12
	Morphometry and methods of comparison	13
	Presentation of results	13
	Note on copper engravings	17
ΤĪ	MORPHOLOCICAL PARADIGMS FOR THE BASIC MODES OF LIFE	
11.	OF SCALLOPS	17
	Reclining	18
	Tight byssal fixation	18
	Byssal swinging	19
	Swimming	19
	Qualificatory section concerning ornament	19
III.	THE PALAEOBIOLOGY OF THE 'EUROPEAN JURASSIC' PECTINIDAE AND PROPEAMUSSIDAE	22
	Eamilial diagnoses .	22
	Family PROPEAMUSSIIDAE TUCKER ABBOT 1954	22
	Genus Propeamussium DE GREGORIO 1884	22
	Amended diagnosis	22
	Subgenus Propeamussium s. s.	22
	Amended diagnosis	22
	Discussion	22
	Propeamussium (Propeamussium) pumilum (LAMARCK 1819)	23
	Synonymy	23
	1. Original diagnosis and description	23
	2. Amended diagnosis	23
	3. Amended description	24
	4. Discussion	24
	6. Geographic range	25
	7. Description of ecology	26
	8. Interpretation of ecology	26
	9. Functional morphology	27
	10. Origins and evolution	27
	Propeamussium (Propeamussium) laeviradiatum (WAAGEN 1867)	28
	Synonymy	28
	1. Original diagnosis and description	28
	2. Amended diagnosis	28
	3. Amended description	29
	4. Discussion	29
	6. Geographic range	-2
	7. Description of ecology	30
	8. Interpretation of ecology	31
	9. Functional morphology	31
	10. Origins and evolution	32
	Propeamussium (Propeamussium) nonarium (QUENSTEDT 1858)	32
	Synonymy	32
	1. Original diagnosis and description	32
	2. Amended diagnosis	
	3 Amended description	32
	. And description	32
	4. Discussion	32 32 33
	 4. Discussion 5. Stratigraphic range 6. Geographic range 	32 32 33 33
	 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 	32 32 33 33 33 33
	 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 	32 32 33 33 33 33 33 34
	 America description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology 	32 32 33 33 33 33 34 34
	 America description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution 	32 32 33 33 33 33 34 34 34
	 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Family PECTINIDAE RAFINESQUE 1815 	32 32 33 33 33 33 34 34 34 34 35
	 America description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution Family PECTINIDAE RAHNESQUE 1815 Genus Entohum MEEK 1865 	32 32 33 33 33 34 34 34 34 35 35
	 Aninticut description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution Family PECTINIDAE RAHNESQUE 1815 Genus Entohum MEEK 1865 Amended diagnosis 	32 32 33 33 33 34 34 34 34 35 35 35
	 Amerida description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution Family PECTINIDAE RAFINESQUE 1815 Genus Entohum MEEK 1865 Amended diagnosis Discussion 	32 32 33 33 33 34 34 34 34 35 35 35
	 Amerida description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution Family PECTINIDAE RAFINESQUE 1815 Genus Entohum MEEK 1865 Amended diagnosis Discussion Subgenus Entohum s. s. 	32 32 33 33 33 34 34 34 34 35 35 35 35 35
	 Amerida description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution Family PECTINIDAE RAFINESQUE 1815 Genus Entohum MEEK 1865 Amended diagnosis Discussion Subgenus Entohum s. s. Amended diagnosis 	32 32 33 33 33 34 34 34 34 35 35 35 35 35 35

Entolium (Entolium) lunare (ROEMER 1839)	36
Synonymy	
1. Original diagnosis and description	
2. Amended diagnosis	., 3/
4. Discussion	40
5. Stratigraphic range	43
6. Geographic range	. 44
7. Description of ecology	. 44
8. Interpretation of ecology	44
9. Functional morphology	45
	עד ,
Entolium (Entolium) corneolum (YOUNG and BIRD 1828)	45
Svnonvmy	45
1. Original diagnosis and description .	47
2. Amended diagnosis	
3. Amended description	. 47
4. Discussion	47
5. Stratigraphic range	52
7. Description of ecology	53
8. Interpretation of ecology	55
9. Functional morphology	55
10. Origins and evolution	. 55
Entelium (Entelium) online (I. SOWEDDY 1917)	5.5
Entolium (Entolium) orbiculare (J. SOWERBY 1817)	55
Driginal diagnosis and description	55
2. Amended diagnosis	
3. Amended description	57
4. Discussion	
5. Stratigraphic range	
6. Geographic range	59
/. Description of ecology	59
9. Functional morphology	59
10. Origins and evolution	
Genus Pseudopecten BAYLE 18/8	60
Discussion	60
Subarran Den debeter e e	
Amended diagnosis	
Discussion .	60
Pseudopecten (Pseudopecten) equivalvis (J. SOWERBY 1816)	61
Synonymy	61
1. Original diagnosis and description	62
2. Amended diagnosis	62
4. Discussion	64
5. Stratigraphic range	
6. Geographic range	68
7. Description of ecology	69
8. Interpretation of ecology	/1
10. Origins and evolution	
0	
Pseudopecten (Pseudopecten) dentatus (J. DE C. SOWFRBY 1827 a)	. 73
Synonymy	. 73
1. Original diagnosis and description	. 74
2. Amended diagnosis	. /4
4. Discussion	74
5. Stratigraphic range	. 75
6. Geographic range	. 75
7. Description of ecology	. 76
8. Interpretation of ecology	. 76
7. Functional morphology	
10. Origins and evolution	. /6

Pseudopecten (Pseudopecten) veyrasensis (DUMORTIER 1864)	77
Synonymy	77
2. Amended diagnosis	78
3. Amended description	78
4. Discussion	78
5. Stratigraphic range	79
6. Geographic range	79
7. Description of ecology	79
9. Functional morphology	79
10. Origins and evolution	79
Subgenus Echinopecten BRASH 1895	79
Amended diagnosis	79
Discussion	80
Pseudopecten (Echnopecten) harbatus (I. SOWERRY 1819)	80
Supopymy	80
1. Original diagnosis and description	80
2. Amended diagnosis	80
3. Amended description	80
4. Discussion	81
5. Stratigraphic range	81
7. Description of ecology	81
8. Interpretation of ecology	82
9. Functional morphology	82
10. Origins and evolution	83
Genus Spondylopecten ROEDER 1882	83
Amended diagnosis	83
Discussion	83
Subgenus Plesiopecten MUNIER-CHALMAS 1887	84
Amended diagnosis	84
Discussion	64
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820)	84
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820)	84 84
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description	84 84 85
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis	84 84 85 85
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion	84 84 85 85 85
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range	84 85 85 85 86 86
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range	84 85 85 85 86 86 86
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology	84 85 85 86 86 86 87 87
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology	84 85 85 86 86 87 87 87
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology	84 85 85 86 86 87 87 88 89 90
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution	84 85 85 86 87 87 88 89 90
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis	84 85 85 86 86 87 87 88 89 90 90
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis	84 85 85 86 86 87 87 88 89 90 90 90
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis	84 85 85 86 86 87 87 88 89 90 90 90 91 91
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Subgenus Spondylopecten s. s. Original diagnosis Discussion	84 85 85 86 87 87 88 90 90 90 91 91 91
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Subgenus Spondylopecten s. s. Original diagnosis Discussion Structure (D'ORBIGNY 1850) Synonymy	84 85 85 86 87 87 87 88 90 90 90 90 91 91 91 92 92
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Discussion	84 85 85 86 87 87 88 89 90 90 90 91 91 91 92 92
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Discussion Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 1. Original diagnosis Amended diagnosis Amended diagnosis Amended diagnosis and description 2. Amended diagnosis	84 85 85 86 87 87 88 89 90 90 90 91 91 91 91 92 92 92 92
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Discussion Spondylopecten (Spondylopecten) palinurus (D'ORBIGNY 1850) Synonymy 1. Original diagnosis and description 2. Amended diagnosis Jiscussion	 84 85 85 86 87 88 89 90 90 90 91 91 92 93
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820). Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Subgenus Spondylopecten s. s. Original diagnosis Discussion 10. Original diagnosis Amended diagnosis Amended diagnosis Amended diagnosis Amended diagnosis Discussion 2. Amended diagnosis and description 2. Amended diagnosis 3. Amended diagnosis	 84 85 85 86 87 88 89 90 90 90 91 91 91 92 92 92 92 92 93 94
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Spondylopecten (Spondylopecten) palinurus (D'ORBIGNY 1850) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 4. Discussion 5. Stratigraphic range 6. Geographic range	 84 85 85 86 87 88 89 90 90 91 91 91 92 92 92 92 92 92 93 94 95
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology	 84 85 85 86 87 87 88 90 90 90 91 91 92 92 92 92 92 92 93 94 95 95
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820). Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 1. Original diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 8. Interpretation of ecology	 84 85 85 86 87 87 88 90 90 91 91 92 92 92 92 92 92 92 93 94 95 96
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s.s. Original diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis </td <td> 84 85 85 86 87 88 89 90 91 91 92 92 92 92 92 92 92 92 93 94 95 96 97 </td>	 84 85 85 86 87 88 89 90 91 91 92 92 92 92 92 92 92 92 93 94 95 96 97
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Amended diagnosis Amended diagnosis Synonymy 10. Original diagnosis Discussion Synonymy 10. Original diagnosis Amended diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution	 84 85 85 86 87 87 88 90 90 91 91 92 92 92 92 92 92 92 92 93 94 95 96 96 97
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 1. Original diagnosis Discussion Synonymylopecten (Sondylopecten) palinurus (D'ORBIGNY 1850) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amend	 84 85 85 86 87 88 89 90 90 91 91 91 91 92 92 92 92 92 92 93 94 95 96 97 97
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Origins and evolution Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology <td> 84 85 85 86 87 88 89 90 90 91 91 91 92 <</td>	 84 85 85 86 87 88 89 90 90 91 91 91 92 <
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Original diagnosis Original diagnosis Amended diagnosis Subgenus Spondylopecten s.s. Original diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 3. Amended diagnosis 3. Amended diagnosis 3. Amended diagnosis 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 9. Functional morphology 9. Functional morphology<	 84 85 85 86 87 88 89 90 90 91 91 92 <
Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology 8. Interpretation of ecology 9. Functional morphology 10. Original diagnosis Original diagnosis Amended diagnosis Discussion Subgenus Spondylopecten s. s. Original diagnosis Discussion Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended diagnosis 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology	 84 85 85 86 87 88 90 90 91 91 92 92 92 92 92 92 92 92 93 94 95 96 97 97 98 99

5.	Stratigraphic range	100
6.	Geographic range	100
7.	Description of ecology	100
8.	Interpretation of ecology	101
9.	Functional morphology	101
10.	Origins and evolution	101
Spo	mdylopecten (Spondylopecten) cardmatus (QUENSTEDT 1858)	102
Syn	nonymy	102
1.	Original diagnosis and description	102
2.	Amended diagnosis	102
3.	Amended description	102
4.	Discussion	102
5.	Stratigraphic range	103
6.	Geographic range	103
7.	Description of ecology	103
8.	Interpretation of ecology	103
9.	Functional morphology	103
10.	Origins and evolution	105
Spo	ondylopecten (Spondylopecten) globosus (QUENSTEDT 1843)	104
Syr	nonymy	104
1.	Original diagnosis and description	104
2.	Amended diagnosis	104
3.	. Amended description	104
4.	Discussion	104
5.	Stratigraphic range	105
6.	. Geographic range	106
7.	Description of ecology	106
8.	Interpretation of ecology	100
9.	Obligation of the lattice	106
10.	. Origins and evolution	100
Ge	enus Camptonectes AGASSIZ 1864	106
	Amended diagnosis	106
	Discussion	107
Sut	bgenus Camptonectes s. s	107
	A use ded discoverie	107
	Amended diagnosis	107
	Discussion	107
Ca	Discussion	107
Са	Discussion	107 107 107
Ca Syr	Discussion	107 107 107 107
Ca Syr 1.	Discussion	107 107 107 107 108
Ca Syr 1. 2.	Amended diagnosis Discussion amptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended diagnosis	107 107 107 107 108 108
Ca Syr 1. 2. 3.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended diagnosis Discussion	107 107 107 108 108 109
Ca Syr 1. 2. 3. 4.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended diagnosis Discussion Stratigraphic range	107 107 107 108 108 108 109 110
Ca Syr 1. 2. 3. 4. 5.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended diagnosis Discussion Stratigraphic range Geographic range	107 107 107 108 108 109 110 112
Ca Syr 1. 2. 3. 4. 5. 6. 7.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology	107 107 107 107 108 108 109 110 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology	107 107 107 108 108 109 110 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology	107 107 107 108 108 109 110 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Origins and evolution	107 107 107 108 108 109 110 112 112 112 112 113
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution	107 107 107 108 108 108 109 110 111 111 111 111 111
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813).	107 107 107 108 108 109 110 112 112 112 112 113 113
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description	107 107 107 107 108 108 109 110 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 1.	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTFR 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description	107/107 107 107 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 10. Ca Syr	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Diagnosis	107 107 107 107 108 108 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 1. 2. 3. 4	Amended diagnosis Discussion umptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Diagnosis Description Discussion	107 107 107 107 108 108 108 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 1. 2. 3. 4. 5.	Amended diagnosis Discussion amptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Original diagnosis and description monymy Original diagnosis and description Discussion Stratigraphic range Description of ecology Interpretation of ecology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813). nonymy Original diagnosis and description Diagnosis Description Discussion Stratigraphic range	107 107 107 107 107 108 108 108 108 108 110 112 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 10. Ca Syr 10. 2. 3. 4. 5. 6.	Amended diagnosis Discussion amptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Origins and evolution umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Diagnosis Description Discussion Stratigraphic range Geographic range Origins and evolution unptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Diagnosis Description Discussion Stratigraphic range Geographic range	107,107,107,107,107,107,107,107,107,107,
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr Syr 10. Ca Syr 10. Ca Syr Syr 10. Ca Syr 10. Ca Syr 10. Ca Syr Syr Syr 10. Ca Syr Syr Syr Syr Syr Syr Syr Syr Syr Syr	Amended diagnosis Discussion amptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Interpretation of ecology Original diagnosis and description umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813). nonymy Original diagnosis and description Diagnosis Description Discussion Stratigraphic range Ociginal diagnosis and description Diagnosis Description Discussion Stratigraphic range Description Discussion Stratigraphic range Geographic range Description of ecology	107,107,107,107,107,107,107,107,107,107,
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr Syr Syr 10. Ca Syr 10. Ca Syr 10. Ca Syr 10. Ca Syr 10. Ca Syr Syr Syr 10. Ca Syr Syr Syr Syr Syr Syr Syr Syr Syr Syr	Amended diagnosis Discussion <i>amptonectes</i> (<i>Camptonectes</i>) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Origins and evolution <i>amptonectes</i> (<i>Camptonectes</i>) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Discussion Stratigraphic range Geographic range Origins and evolution <i>auritus</i> (SCHLOTHEIM 1813) nonymy Original diagnosis and description Discussion Stratigraphic range Description Discussion Stratigraphic range Description of ecology Interpretation of ecology Interpretation of ecology	107/107 107 107 107 108 108 108 108 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syrr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syrr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syrr 1. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 7. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 9. 10. 7. 8. 8. 8. 9. 10. 7. 8. 8. 9. 8. 8. 9. 8. 7. 8. 8. 9. 7. 8. 9. 8. 9. 8. 9. 7. 7. 8. 8. 9. 8. 7. 8. 8. 9. 8. 8. 9. 8. 8. 8. 8. 9. 8. 8. 9. 8. 8. 8. 9. 7. 8. 9. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	Amended diagnosis Discussion <i>imptonectes (Camptonectes) subulatus</i> (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Functional morphology Original diagnosis and description <i>amptonectes (Camptonectes) auritus</i> (SCHLOTHEIM 1813) nonymy Original diagnosis and description Discussion Stratigraphic range Geographic range Description Stratigraphic range Description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Interpretation of ecology Interpretation of ecology Functional morphology	107/107 107 107 107 107 108 108 108 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syrr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syrr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 7. 10. 10. 7. 10. 7. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Amended diagnosis Discussion <i>imptonectes (Camptonectes) subulatus</i> (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Functional morphology Original diagnosis and description <i>auritus</i> (SCHLOTHEIM 1813) nonymy Original diagnosis and description Discussion Stratigraphic range Description Discussion Stratigraphic range Description Discussion Stratigraphic range Geographic range Description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Interpretation of ecology Interpretation of ecology Origins and evolution	107/107 107/107 107/107 108 108 108 108 109 1101 1111 1111 1111
Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca	Discussion	107/107 107/107 107/107 108 108 108 109 1101 1111 1111 1111 111
Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca	Amended diagnosis piscussion amptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Original diagnosis and description official morphology Original diagnosis and description Discussion stratigraphic range Description of ecology Interpretation of ecology Original diagnosis and description Diagnosis Description Discussion Stratigraphic range Description Discussion Stratigraphic range Description Discussion Stratigraphic range Description of ecology Interpretation of ecology Functional morphology	107 107 107 107 107 108 108 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 10. Ca Syr 10. Ca Syr	Amended diagnosis mptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Pructional morphology Original diagnosis and description corigins and evolution amptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Discussion Stratigraphic range Description Description Discussion Stratigraphic range Description Discussion Stratigraphic range Description Discussion Stratigraphic range Description of ecology Interpretation of ecology Punctional morphology Origins and evolution </td <td>107 107 107 107 107 107 107 107</td>	107 107 107 107 107 107 107 107
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 10. Ca Syr 10. Ca Syr 10. Ca 10. 2. 3. 4. 5. 5. 5. 10. Ca 10. 2. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Amended diagnosis Discussion . amptonectes (Camptonectes) subulatus (MUNSTER 1836) . nonymy Original diagnosis and description . Amended diagnosis . Amended description . Discussion . Stratigraphic range . Geographic range . Description of ecology . Interpretation of ecology . Functional morphology . Original diagnosis and description . monymy . Original diagnosis and description . Discussion . Stratigraphic range . Original diagnosis and description . Discussion . Stratigraphic range . Description . Discussion . Stratigraphic range . Geographic range . Description of ecology . Interpretation of ecology . Origins and evolution . amptonectes (Camptonectes) laminatus (J. SOWEREY 1818)	107 107 107 107 107 108 108 108 109 110 112 112 112 112 112 112 112 112 112
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr 10. Ca Syr 10. Ca Syr 10. Ca	Amended diagnosis piscussion . amptonectes (Camptonectes) subulatus (MUNSTER 1836) . nonymy Original diagnosis and description . Amended diagnosis . Amended description . Discussion . Stratigraphic range . Geographic range . Description of ecology . Interpretation of ecology . Interpretation of ecology . Origins and evolution . umptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) . nonymy . Original diagnosis and description . Discussion . Stratigraphic range . Geographic range . Geographic range . Geographic range . Description of ecology . Interpretation of ecology . Origins and evolution . amptonectes (Camptonectes) laminatus (J. SOWEREY 1818) . <td>107 107 107 107 107 108 108 109 100 110 111 111 111 111 111</td>	107 107 107 107 107 108 108 109 100 110 111 111 111 111 111
Ca Syr 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syr Syr Syr 10. Ca Syr Syr Syr Syr Syr Syr Syr Syr Syr Syr	Amended diagnosis Discussion . amptonectes (Camptonectes) subulatus (MUNSTER 1836) . Nonymy . Original diagnosis and description . Amended diagnosis . Amended description . Discussion . Stratigraphic range . Geographic range . Description of ecology . Interpretation of ecology . Functional morphology . Origins and evolution . <i>umptonectes (Camptonectes) auritus</i> (SCHLOTHEIM 1813) . nonymy . Original diagnosis and description . Discussion . Stratigraphic range . Description of ecology . Discussion . Stratigraphic range . Description of ecology . Interpretation of ecology . Origins and evolution . amptonectes (Camptonectes) laminatus (J. SOWERBY 1818) . nonymy . Original diagnosis and description . Amended diagnosis . Amended diagnosis . A	107 107 107 107 107 108 108 108 109 110 111 111 111 111 111 111
Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca Syri 10. Ca Syri 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Ca 3. 4. 5. 5. 6. 7. 7. 8. 9. 10. Ca 3. 4. 5. 6. 7. 8. 9. 10. Ca 3. 7. 8. 9. 10. Ca 5. 6. 7. 7. 8. 9. 10. Ca 5. 6. 7. 7. 8. 9. 10. Ca 5. 6. 7. 7. 8. 9. 10. Ca 5. 6. 7. 7. 8. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	Amended diagnosis Discussion amptonectes (Camptonectes) subulatus (MUNSTER 1836) nonymy Original diagnosis and description Amended diagnosis Amended description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Interpretation of ecology Origins and evolution amptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) nonymy Original diagnosis and description Discussion Stratigraphic range Geographic range Description Discussion Stratigraphic range Geographic range Description of ecology Interpretation of ecology Interpretation of ecology Interpretation of ecology Interpretation of ecology Prunctional morphology Origins and evolution amptonectes (Camptonectes) laminatus (J. SOWERBY 1818) nonymy Original diagnosis and description Prunctional morphology Original diagnosis and d	107 107 107 107 107 108 108 108 109 110 111 111 111 111 111 111

 Description of ecology	128 129 129 129
Camptonectes (Camptonectes) virdunensis (BUVIGNIER 1852)	130
Synonymy	130
1. Original diagnosis and description	130
2. Amended diagnosis	131
3. Amended description	131
4. Discussion	131
6. Geographic range	132
7. Description of ecology	132
8. Interpretation of ecology	132
9. Functional morphology	132
10. Origins and evolution	132
Subgenus Camptochlamys ARKELL 1930a	133
Amended diagnosis	133
Discussion	133
Camptonectes (Camptochlamys) obscurus (I. SOWERBY 1818)	134
Synonymy	134
1. Original diagnosis and description .	135
2. Amended diagnosis	135
3. Amended description	135
4. Discussion	136
5. Stratigraphic range	140
6. Geographic range	140
7. Description of ecology	141
9 Functional morphology	142
10. Origins and evolution .	142
Construction (Construction of Ladie) (Description (1920)	112
Camptonectes (Camptochiamys) clathratus (KOFMFR 1836)	143
1 Original diagnosis and description	143
2 Amended diagnosis	145
3. Amended description	145
4. Discussion	146
5. Stratigraphic range	147
6. Geographic range	148
7. Description of ecology	148
8. Interpretation of ecology	148
9. Functional morphology	149
To. Origins and evolution	149
Genus Eopecten DOUVILLE 1897	149
Amended diagnosis	149
	149
Eopecten velatus (GOLDFUSS 1833)	150
Synonymy	150
1. Original diagnosis and description	151
2. Amended diagnosis	152
4. Discussion	152
5. Stratigraphic range	153
6. Geographic range	153
7. Description of ecology	154
8. Interpretation of ecology	154
9. Functional morphology	154
IU. Origins and evolution	154
Eopecten spondyloides (ROFMER 1836)	155
Synonymy	155
1. Original diagnosis and description	155 155
 Original diagnosis and description Amended diagnosis 	155 155 156
 Original diagnosis and description . Amended diagnosis . Amended description . 	155 155 156 156
 Synonymy Original diagnosis and description Amended diagnosis Amended description Discussion 	155 155 156 156 156
Synonymy 1. Original diagnosis and description . 2. Amended diagnosis . 3. Amended description . 4. Discussion . 5. Stratigraphic range . 6. Geographic range .	155 155 156 156 156 157
Synonymy 1. Original diagnosis and description 2. Amended diagnosis 3. Amended description 4. Discussion 5. Stratigraphic range 6. Geographic range 7. Description of ecology	155 155 156 156 156 157 157

9. Functional morphology	158 158
Eopecten abjectus (PHILLIPS 1829)	158
Synonymy	158
1. Original diagnosis and description	159
2. Diagnosis	159
3. Description	159
5. Stratigraphic range	160
6. Geographic range	160
7. Description of ecology	160
8. Interpretation of ecology	160
10. Origins and evolution	160
Genus Chlamas Rödding 1798 (non Krach 1801)	161
Amended diagnosis	161
Discussion	161
Subgenus Chlamys s. s.	161
Amended diagnosis	161
Discussion	161
Chlamys (Chlamys) textoria (SCHLOTHEIM 1820)	163
Synonymy	163
Original diagnosis and description	167
2. Amended diagnosis	167
4. Discussion	169
5. Stratigraphic range	173
6. Geographic range	174
7. Description of ecology	175
9. Functional morphology	177
10. Origins and evolution .	178
Chlamvs (Chlamvs) valoniensis (DEFRANCE 1825b).	179
Synonymy	179
1. Original diagnosis and description	180
2. Diagnosis	180
3. Description	180
5. Stratigraphic range	181
6. Geographic range	184
7. Description of ecology	184
8. Interpretation of ecology .	185
9. Functional morphology	185
Chlumer (Chlumer) taller (D'ODDICADE 1950)	105
Chiamys (Chiamys) politix (D ORBIGNY 1850)	105
1. Original diagnosis and description	185
2. Amended diagnosis	186
3. Amended description	186
4. Discussion	186
6. Geographic range	180
7. Description of ecology	187
8. Interpretation of ecology	187
9. Functional morphology	187
10. Origins and evolution	187
Genus Radulopecten ROLLIER 1911	187
Diagnosis	187
Radulopecten wagans (LDEC SOWERRY 1826a)	100
Synonymy	188
1. Original diagnosis and description	189
2. Amended diagnosis	190
3. Amended description	190
4. Discussion	191
6. Geographic range	193
7. Description of ecology	194

8. Interpretation of ecology	194
9. Functional morphology	195
10. Origins and evolution	195
Ridulopecten gurians (ROEMER 1836)	195
Suppression	195
1 Original diagnosis and description	196
 2. Amended diagnosis 	196
3. Amended description	196
4. Discussion	196
5. Stratigraphic range	198
6. Geographic range	198
7. Description of ecology	198
8. Interpretation of ecology	198
9. Functional morphology	198
10. Origins and evolution	198
Radulopecten strictus (MUNSTER 1833)	199
Synonymy	199
1. Original diagnosis and description	199
2. Amended diagnosis	200
3. Amended description	200
4. Discussion	200
5. Stratigraphic range	201
6. Geographic range	202
/. Description of ecology	202
8. Interpretation of ecology	202
9. Functional morphology	202
	-0-
Radulopecten fibrosus (J. SOWFRBY 1816)	203
Synonymy	203
1. Original diagnosis and description	204
2. Amended diagnosis	204
3. Amended description	204
4. Discussion	203
6. Geographic range	207
7 Description of ecology	208
8. Interpretation of ecology	208
9. Functional morphology	208
10. Origins and evolution	209
Radulapecten scarburgensis (YOUNG and BIRD 1822)	209
Supervision Supervision (10000 and bitter 1022)	209
1. Original diagnosis and description	210
 Amended diagnosis 	210
3. Amended description	210
4. Discussion	210
5. Stratigraphic range	214
6. Geographic range	214
7. Description of ecology	214
8. Interpretation of ecology	215
9. Functional morphology	215
10. Origins and evolution	216
Radulopecten sigmaringensis (ROLLIER 1915)	216
Synonymy	216
1. Original diagnosis and description	216
2. Amended diagnosis	216
3. Amended description	216
4. Discussion	216
5. Stratigraphic range	217
5. Geographic range	21/
8 Interpretation of ecology	217
9. Eunctional morphology	217
10. Origins and evolution	217
	217
Kaaniopecten inequicostatus (100NG and BIRD 1822)	217
Synonymy	217
Original diagnosis and description Amended diagnosis	219
3 Amended description	219

4. Discussion	220
5. Stratigraphic range	223
6. Geographic range	223
7. Description of ecology	224
8. Interpretation of ecology	224
9. Functional morphology	224
10. Origins and evolution	224
BIBLIOGRAPHY	225
Appendix I – Species described from the European Jurassic but not discussed in the systematic section of this work	235
Appendix II – Derivation of I30 values	235

I. INTRODUCTION

The present work is in essence a somewhat condensed version of the author's doctoral thesis 'The palaeobiology of the bivalve family Pectinidae in the Jurassic of Europe' (JOHNSON, 1980). The Propeamussiidae were also included in the latter work, the word Pectinidae being interpreted sensu lato to mean all scallops. The original research was undertaken with a view to providing data for the then nascent debate over the tempo and mode of evolution (review in GOULD and EL-DREDGE, 1977) and it is hoped to discuss the evolutionary implications of the data presented herein in a future publication.

In the course of the research the author undertook extensive field work in England (supplemented by studies in France and Germany) and examined museum material preserved in some 18 institutions spread through England, France and Germany. To all those who helped by making collections available for study and to the many others who assisted in the research (financed from the Burdett-Coutts Fund, University of Oxford) grateful thanks are offered. A full list of acknowledgements is presented in the author's thesis. Latterly, Mrs. V. JENKINS has been of the greatest assistance in typing corrections to the final draught of the manuscript.

The original study was succeeded by an investigation of the Upper Triassic and Lower Jurassic bivalves of alpine Europe. Relevant information from the latter research, financed by the Alexander-von-Humboldt-Stiftung and carried out at the Universitäts-Institut für Paläontologie und historische Geologie, München (where the author's collection is now housed), has been incorporated herein.

It proved impossible to gain more than a very superficial picture of the palaeobiology of a suite of distinctive species largely confined to the Tithonian of southern and alpine Europe. These species (for which D'ORBIGNY's (1850) name Pecten Insularum, GEMMELLARO and DI BLASI'S (1874) names P. nebrodensis, P. oppeli, P. billiemensis, P. siculus, P. polyzonites, P. acrorysus, P. poecilographus, P. zitteli and P. grammoproticus, BOEHM's (1883) names P. clare rugatus and P. fraudator and BLASCHKE'S (1911) name P. polycyclus are available) are excluded from formal treatment herein. The genus Weyla, which occurs in Europe but is far more abundant in the Americas (DAMBORENEA and MANCENIDO, 1979) is also excluded. Data on the extra-European distribution of the formally analysed species has however been included in order to present a more complete picture of the palaeobiology of these species.

Mode of life was judged in some cases by drawing analogies with living, morphologically similar forms. However, in an attempt to introduce more rigour into the analysis, a variant of the 'paradigm' approach (RUDWICK, 1964) was also employed. The methodology here is comparison of the given shell morphology with sets of ideal dimensions and qualities (the paradigms – presented in Part II) devised for the various modes of life.

SPECIES CONCEPT

If significant morphological evolution occurs in some fraction of a species' total population or if it occurs throughout a species' total population in two or more different directions we have speciation, in the multiplicative sense of the word. Significant morphological evolution in the same direction throughout a species' total population (phyletic evolution) is speciation in the non-multiplicative sense of the word. A number of notable modern authors (e.g. GOULD and EL-DREDGE, 1977: 119; STANLEY, 1978: 27, 28) have restricted their use of the term speciation to the multiplicative process in order to simplify discussion of the relative importance of this and the non-multiplicative mode of evolution. Since such discussion was one of the author's research objectives (see above) the 'modern' approach has been followed herein. It has the effect that separate specific names can only be applied to the separate branches emanating from a branching point in a phylogenetic tree (i. e. the branches themselves cannot be subdivided into separate species even if they signify considerable phyletic evolution). Whether all of the two or more descendant branches should be accorded different specific names must be decided by whether they can all be thought of as constituting fresh branches. This in turn must be decided by the mode of arrangement of the branches in the case in question. Four basic configurations can be envisaged (text fig. 1). In a) and b) it is clear that both D_1 and D_2 should be accorded a different specific name to A while in c) it is correspondingly clear that D₂ must be accorded the same specific name as A. The latter is also the most logical solution to d) although it is less easy to perceive D_2 and A as parts of the same branch. In practice, of course, only segments of the branches of a phylogenetic tree are known. Where such segments overlap temporally it is clear that they must be accorded separate specific names. In the case of stratigraphically separated but obviously related segments one can only guess whether they

Text fig. 1: The four basic potential branch configurations about a simple bifurcation in a phylogenetic tree.

constitute parts of the same branch and should therefore be accorded the same specific name, or whether they constitute parts of different branches and should therefore be accorded separate specific names. Thus in such cases application of the 'modern' species concept defeats the object for which it was originally introduced, that of clearly differentiating multiplicative from non-multiplicative processes of evolution. If such cases are common one might just as well employ a 'traditional' species concept. The author came across relatively few instances where an arbitrary decision had to be made and therefore feels justified in having employed the 'modern' concept.

Text fig. 2: Simplified interior view of the right value of the extant pectinid *Gloripallium pallium*; l. v. = left value (adapted from WALLER, 1972b: 228).

Text fig. 3: Simplified anterior view of the extant pectinid Argopecten purpuratus (adapted from WALLER, 1969: 9).

GENERAL FEATURES AND DESCRIPTIVE TERMINOLOGY

Text figs. 2 and 3 illustrate major features of typical pectinids and serve to introduce most of the potentially unfamiliar morphological terms employed herein. A few of the terms appear to have been invented by WALLER (1969) but most have a long history of usage. Orientation is conventional rather than anatomical with an imaginary line meeting the outer ligament perpendicularly at the resilium marking the boundary between the anterior and posterior shell sectors and an imaginary line perpendicular to the latter halfway between the resilium and the ventral margin marking the boundary between the dorsal and ventral shell sectors.

The outline of the left disc is almost always a mirror image of the right. The auricles of the left valve are, however, never extended more than fractionally dorsal of the outer ligament insertion (at least in post-Palaeozoic forms) while those of the right valve are usually at least noticeably (sometimes very markedly) extended beyond the outer ligament insertion. The base of the anterior auricle of the left valve is, moreover, rarely excavated to the same extent as that of the right valve.

The terms byssal notch and byssal sinus, referring respectively to excavations at the bases of the right and left anterior auricles, derive from the fact that the byssus (if any) is extended out of the shell (via the comb-like structure known as the ctenolium) in the area immediately ventral to the anterior auricles.

The terms equivalve/inequivalve and equilateral/inequilateral are used herein only with reference to that great majority of the shell constituted by the discs. Practically all scallops (i. e. pectinids and propeamussiids) have to be regarded as inequivalve and inequilateral if the auricles are included into consideration (see above).

Most of the terms such as lamellae, spines, tubercles used herein to describe ornament need no clarification. A few words are however called for in connection with the terms plicae, costae, striae and sulci. The term plicae is applied to radial corrugations affecting the entire thickness of the shell at the ventral margin. All other forms of radial ornament are termed costae except where very fine (relief less than about 0.1 mm), in which case the term striae is used. Sulci are the troughs between plicae and costae.

The terms original and initial are applied to the first formed or primary plicae, costae or striae in species which have secondary plicae, costae or striae (as a result either of intercalation or splitting). The term original is used where the first formed plicae, costae or striae in fact appear at the start of post-larval ontogeny and the term initial is used where the first-formed plicae, costae or striae appear somewhat later.

Text fig. 4: General dimensions measured in this study: 1. In the plane of commissure (based on the specimen illustrated in text fig. 2; all parameters apart from N are also measurable in the left valve).

Text fig. 5: General dimensions measured in this study: 2. Perpendicular to the plane of commissure (based on the specimen illustrated in text fig. 3).

Text fig. 6: Special dimensions: measurable only in *Propeamuss-ium* (*P.*) *laeviradiatum* and species of *Entolium* (based on a general-ised *Entolium* right valve umbonal region, seen from the inside).

MORPHOMETRY AND METHODS OF Comparison

In an attempt to make the study more rigorous it was decided to back up the tried and tested 'eyeball' method of comparison with quantitative methods. To this end some 4000 specimens, representing perhaps half of the total numer examined, were measured in up to 15 parameters (usually about 6 or 7). Non-ornamental parameters are illustrated, together with the abbreviated names given to them for the purposes of easy graphing, in text-figs. 4–6. Their full names are listed in Table 1 together with clarificatory notes where necessary. All linear dimensions are measured either perpendicular or parallel to the hinge line. Ornamental parameters measured, where possible, include the number of plicae (PL), the number of external costae (EC) and the number of internal costae (IC). These need to clarification except in so far as it is necessary to say that folds merging into the disk flanks were not counted as plicae.

Linear dimensions were measured with vernier callipers. In equivalve species the parameter C was in some cases ascertained by measuring the convexity of a single valve and then doubling. The parameter UA was measured with a contact goniometer. It is technically rather difficult to measure UA accurately with a contact goniometer in species where the umbo projects beyond the hinge line and in small specimens of all species. In the latter case 'measuring error' is probably random but in the former it is likely that the actual values are systematically underestimated, the tendency to underestimate probably increasing with increasing umbonal projection. Measuring error is otherwise probably between I and 2° for UA and about 0.2 mm for linear measurements.

Analysis of the quantitative data was restricted to the plotting of bivariate graphs and histograms.

PRESENTATION OF RESULTS

A standard systematic format has been used. No attempt at a complete revision of the supra-specific classification has been made since for many groups this would require a considerable knowledge of forms occurring outside the Jurassic. At the generic level the author has followed the classification of the Treatise on Invertebrate Paleontology (HERT-LEIN, 1969) except where this is plainly inadequate. Classification at the familial level follows WALLER's (1978) recent thoroughgoing reappraisal of the Pteriomorphia.

The abbreviations M, OD and SD after citations of type species (and specimens) mean, respectively, type species by monotypy, type species by original designation and type species by subsequent designation.

The layout of the analysis for each species is largely selfexplanatory. The attempt to determine mode of life by means of comparison with the paradigms devised in Part II is presented in Section 9 (Functional morphology) together with discussion of the function of particular shell features (partly drawing on the reasoning presented in the qualificatory section of Part II) and of other related topics.

In the synonymy lists the author has employed a modified version (presented below) of MATTHEWS' (1973) system for indicating degree of certainty and status of each reference. Although it seems complex the system is easily understood and appreciated in practice.

Where the specimens corresponding to the cited reference have been seen by the author or where the cited reference includes a description or illustration, the date of the reference is printed in normal type. The symbol v to the left of the date means that the author has seen the specimens corresponding to the cited reference. The superscript * signifies that the specimens are types of the cited species. The symbols v and v* may be preceded by the symbols ? and p (pars) implying, in the first case, that certain specimens seen by the author may correspond to those which are the subject of the cited reference, and in the second case, that the author has seen only some of the specimens corresponding to the cited reference.

Table 1:	Nc	n-ornamental parameters measured in this study (see text figs 4–6).
AH	Atom	anterior hinge length; the length of the anterior auricle measured at the hinge line (i. e. just ventral of the outer ligament).
AHL	_	anterior half length; the perpendicular distance between a line at right angles to the hinge line touching the shell at its most anteriorly situated point and the most ventrally situated point on the shell (not graphed for any species).
AL		separation of the auricular apices.
С	-	convexity (measured between the crests of plicae/costae (where present) on the right and left valves).
Н	_	height; the maximum distance from the hinge line to the ventral margin measured in a direction perpendicular to the hinge line.
HAA	_	height of the anterior auricle; the total height of the anterior auricle.
HAAD	_	height of the anterior auricle dorsal of the hinge line.
I	_	intersinal distance; the distance between the deepest point in the byssal notch or sinus (the most ventrally situated point in the disc/auricle suture in <i>Entolium (E.)</i> corneolum and <i>E. (E.) orbiculare)</i> and the posterior margin measured in a direction parallel to the hinge line.
L	-	length; the perpendicular distance between two lines at right angles to the hinge line and tangential to the most anteriorly and posteriorly situated points on the shell.
N	_	depth of the byssal notch; the perpendicular distance between two lines at right angles to the hinge line and tangential to the shell at the most anteriorly situated point on the anterior auricle of the right valve and the deepest point in the byssal notch (the depth of the byssal sinus (left valve) was not measured in this study).
PH	_	posterior hinge length; the length of the anterior auricle measured at the hinge line (i. e. just ventral of the outer ligament).
PHL	_	posterior half length; the perpendicular distance between a line at right angles to the hinge line touching the shell at its most posteriorly situated point and the most ventrally situated point on the shell (not graphed for any species).
UA	_	umbonal angle; the angle between two lines tangential to the dorsal 'shoulders' of the disc and meeting at the apex of the umbo.

The symbols v and v^{*} may be followed by no symbol at all or by the symbols p, non, ?, (?) and ?p. Lack of a symbol implies that the specimens corresponding to the cited reference are considered to be within the author's hypodigm for the species under discussion (as described in the relevant Section 3). The symbols p and non imply, respectively, that some and none of the specimens are considered to be within the author's hypodigm while ? implies that the specimens may be within the author's hypodigm. The symbol (?) implies less uncertainty than ?. The symbol ?p has an obvious connotation. 'No symbol', p, non, ?, (?) and ?p need not, of course, necessarily be preceded by v or v^{*}.

Where a species is referred to only in an unillustrated faunal list and the corresponding material has not been seen by the author, the date of the reference is printed in italics. It is quite possible in some such cases to be practically certain of the affinities of the specimens (e. g. if the fauna of the horizon of derivation is well known from other sources) so such references are not preceded by a qualifying symbol, the italics being understood to convey the slight level of uncertainty. It is clear that ? and (?) are the only symbols that may precede a date in italics.

The bivariate graphs are intended to illustrate the variation and, as far as this can be done with 'static' plots (Соск, 1966),

the ontogeny of the various shell dimensions. A minimum requirement of 7-10 points was set for the inclusion of such graphs. Where they differ between the valves, right and left values vor any given parameter are separated and denoted by addition of the letter R or L as a subscript to the abbreviated name of the parameter. (Although there is no difference between the valves, right and left valve values for the intersinal distance in Entolium (E.) corneolum are plotted separately for the purposes of comparison with E. (E.) lunare.) Numbers in the graphs refer to points immediately above and to the left of them and correspond to numbers in the text accompanying citations of certain important (usually type) specimens or figures of specimens. The graduations on the axes are in millimetres in all cases except for UA, where the graduations are in degrees. Apart from in the case of the parameter UA, length has been employed as the standard measure of size except where this generates too few points for inclusion, in which case height has been employed. It was felt at the time of draughting that umbonal angle was not entirely independent of length so this parameter was plotted against height rather than length wherever sufficient data presented itself. Subsequent consideration suggests, in fact, that umbonal angle and length are independent of each other in all real situations.

Where plical frequency histograms have been plotted, plical counts for right and left valves have been plotted together where the minimum plical count is 12 or more, even though there may be a difference of one plica between the valves. Where there is a difference between the valves and the minimum number of plicae is less than 12, values for right and left valves have been separated and only one set plotted (the letter R or L is added as a subscript to PL as appropriate). The single histogram for 1C (*Propeamussium* (P.) *pumilum*) uses both right and left valve data so no subscript is added to the abbreviation. However, the single graph involving EC (P. (P.) laeviradiatum) uses only left valve data so the letter L is added as a subscript to EC.

The locations and museum registration numbers of specimens represented in the bivariate plots and histograms can be obtained from the author on request.

Table 2: Explanation of abbreviated museum (and individual collection) names and lists of works whose partial or complete subject is pectinids and/or propeamussiids preserved in the museums.

BCM	:	City of Bristol Museum and Art Gallery (J. SOWERBY, 1812–22).
ВМ	:	British Museum (Natural History), London (Arkell, 1929a–35a; Cox, 1935a, 1936a, 1952; Damon, 1880; Duef, 1978; Lycett, I863; Neale, 1956; Paris and Richardson, 1916; J. Sowerby, 1812–22; J. de C. Sowerby, 1822a–46a, 1840b; Whidborne, 1883; Witchell, 1880).
BSPHG	:	Bayerische Staatssammlung für Paläontologie und historische Geologie, Munich (Военм, 1883; Burckhardt, 1903; Goldfuss, 1833–40; Кинн, 1935, 1936; Rothplftz, 1886; Schlippe, 1888; Waagen, 1867; Yamani, 1975).
DM	:	Institut des Sciences de la Terre, Université de Dijon.
ENSM	:	École Nationale Supérieure des Mines, Centre d'Études et de Recherches de Paléontologie Biostratigraphique, Université de Paris-Sud, Centre d'Orsay (BUVIGNIER, 1852; BAYLE, 1878; DOLLEUS, 1863; DOUVILLE, 1916; TERQUEM and JOURDY, 1869).
GPIB	:	Institut für Paläontologie der Rhein. FriedrWilhelms Universität, Bonn (GOLDEUSS, 1833-40).
GPIG	;	Geologisch-Paläontologisches Institut und Museum der Georg-August-Uni- versität, Göttingen (ERNST, 1923).
GPIT	:	Universität Tübingen, Institut und Museum für Geologie und Paläontologie (Oppel, 1853; QUENSTEDT, 1858; ROLLIER, 1915; STAESCHE, 1926).
НМ	:	Museum für Naturkunde an der Humboldt-Universität zu Berlin (Schlothfim, 1820).
IGS	:	Institute of Geological Sciences, Geological Survey, London (Hull, 1857; Melville, 1956; Morris and Lycett, 1851–55; Tawney, 1866).
MHNL	:	Museum d'Histoire Naturelle, Lyon (DUMORTIER, 1864–74).
MN	:	Museum Nationale d'Histoire Naturelle, Paris (LAMARCK, 1819).
MNO	:	Museum Nationale d'Histoire Naturelle, Paris, D'ORBIGNY Collection (D'ORBIGNY, 1850).
MNP	:	Museum Nationale d'Histoire Naturelle, Paris, PERON Collection (PERON, 1905).
MNR	:	Museum Nationale d'Histoire Naturelle, Paris, Regional Collection.
MNS	:	Museum Nationale d'Histoire Naturelle, Paris, Systematic Collection (Cotteau, 1853; JC. Fischer, 1964; de Loriol, 1894, 1904; de Loriol and LAMBERT, 1893; de Loriol et al., 1872).
NM	:	École nationale Supérieure de Geologie, Nancy (BUVIGNIER, 1852; DECHASEAUX, 1936).
NMW	:	Naturhistorisches Museum, Vienna (NEUMAYR, 1871).
OUM	:	Oxford University Museum (Arkell, 1926, 1929a-35a; Douglas and Arkell, 1932; DUFF, 1978; Kirkaldy, 1963).
SbM	:	Woodend Museum, Scarborough.
ScM	:	Scunthorpe Museum and Art Gallery.
SM	:	Sedgwick Museum, Cambridge (WHIDBORNE, 1883).
WM	:	Whitby Museum (Simpson, 1884).
YM		Yorkchire Museum YORK (PHILLIPS 1829)

Table 3: Key to symbols used in graphs and diagrams (*the sense in wic these stage names are applied is explained on p. 16).

The abbrevations of museum names (and of the names of particular collections in museums) used herein are listed and explained in Table 2 together with works whose partial or complete subject is Jurassic scallops preserved in the various museums. Non-parenthesised numbers following museum abbreviations in the text refer to individual specimens or small 'collectives' in a single tray except in the case of YM where the number refers to a box. Unfortunately in a number of museums unfigured material is not catalogued thus where reference is made to such material no more than the identity of the museum can be indicated. Where more than one specimen is involved as a reference to museum material and the actual number is of some importance, it is quoted in square brackets.

The species distribution maps have been compiled very largely from the citations listed in the synonymies. Details concerning the remaining information (derived from collections) can be obtained from the author on request. The reconstructions employed as the basis for charting extra-European distribution are those of SMITH and BRIDEN (1977). In the absence of precise details concerning place of discovery, specimens from the Caucasus (POMPECKJ, 1897) have been symbolised on both the north and south sides of Tethys.

The symbols used in both the graphs and the maps to indicate stratigraphic horizon are explained in Table 3. Although the general lack of stratigraphic subdivision beyond the level of the stage masks some of the temporal changes in morphology and distribution mentioned in the text, it was felt that the plethora of symbols required to illustrate such changes would prevent appreciation of the larger scale changes.

The L. and U. Pliensbachian have traditionally been regarded as subdivisions of almost stage rank. Separate symbols are therefore used for specimens from the L. and U. Pliensbachian in exception to the general rule of using the same symbol for specimens from all substages of a stage.

The zonal stratigraphic scheme presented in Table 4 and used throughout is that of Hallam (1975a). The author has followed Hallam in not recognising the Portlandian stage. Sediments in S. England and N. W. France which would traditionally be termed Portlandian are herein termed Tithonian. The term Kimmeridgian is applied sensu gallico (= L. Kimmeridgian sensu anglico).

Table 4: Zonal scheme (after Hallam, 1975 a) for the European Jurassic (see p. 16).

Appendix I is a list of those nominal pectinid and propeamussiid species described from the Jurassic of Europe which are not considered herein. Apart from names created for members of the highly distinctive group of species from the Tithonian of alpine and southern Europe and for members of the genus *Weyla* (see p. 11) it consists of names created for specimens which in the author's opinion are specifically indeterminate and names which, as a result of poor descriptions and figures and the unknown whereabouts of type material, can only be said to refer to 'pectinids' or 'propeamussiids'.

NOTE ON COPPER ENGRAVINGS

Many of the illustrations in the earlier works referred to herein were printed from copper engravings. Since this process involves reversal of the image it follows that for accurate reproduction the engraving must be a mirror image of the original specimen. A number of peculiar illustrations encountered in the course of research were quite clearly the result of a failure to make the initial reversal. In such cases measurements have been automatically reversed and in general no further comment has been made in the text.

I am grateful to R. J. CLEEVELY (British Museum; Nat. Hist.) for pointing out to me the reason for reversed illustrations.

II. MORPHOLOGICAL PARADIGMS FOR THE BASIC MODES OF LIFE OF SCALLOPS

The background to the inclusion of this piece is presented on p. 11 together with an explanation of the sense in which the term 'paradigm' is applied herein. The mode of hite categories are a combination of those of KAUFMANN (1969) and STANLEY (1970). Although some living pectinids are known to be cemented (e. g. *Hinnites*) no paradigm is presented for this mode of life because it is easily recognisable in fossils from preservation. In formulating the paradigms the author has restricted his attention to easily observable external features of the shell.

Size of the antero- and posterodorsal disc gapes has therefore not been considered. This might be thought to represent an important omission in connection with the swimming paradigm. In fact it is probably of little consequence, for, as WALLER (1969) has pointed out, the jets of water expelled during swimming are actually controlled by the apposed velar lobes of the antero- und posterodorsal parts of the shell. It should be pointed out that swimming is quite possible in forms completely lacking disc gapes (e. g. *Gloripallium pallium* [see WALLER, 1972 b]).

Many living scallops actually have more than one mode of life (e. g. byssal swinging/tightly byssate, reclining/swimming) so this possibility has to be borne in mind in comparing fossil species to the paradigms. It is doubtful-whether swimming could ever be a full-time activity and certainly no living scallops have yet been discovered in which swimming is the exclusive mode of life.

RECLINING

Reclining is defined as lying on the sea floor without any means of attachment. All known living species with this habit lie on the right valve. In the lack of a means of attachment reclining species are susceptible to overturning and transport in high energy environments. This danger can be offset by having a large thick shell (increasing weight) with strong ornamentation on the right valve (increasing frictional resistance to movement). Low ornamentation on the left valve and generally low convexity will also help to lessen the risk of overturning and transport by reducing the profile of the shell and consequently its resistance to water movements. Given an inability to orientate the shell with respect to the direction of water movements an orbicular shape will be the best form for the disc as far as minimising the risk of overturning is concerned. A low convexity, orbicular disc is also the best form for reclining in low energy environments where the substrate is soft, since it spreads the weight of the shell and thereby inhibits sinkage. Small size (large surface area/weight ratio) and a thin shell will be similarly beneficial in this situation and strong ornament will be a disadvantage unless it extends beyond the disc margins as some form of protuberance with a high surface area/weight ratio and thus provides a 'snowshoe' effect. Large auricles would provide the same benefit on soft substrates but otherwise no advantage can be envisaged in their possession for a standard reclining mode of life.

TIGHT BYSSAL FIXATION

Tightly byssate scallops apply the right valve to the substrate and extend a short byssus over the margin of the right valve at the base of the anterior auricle. The great majority of living species attach themselves beneath or on the sides of hard objects.

Unless the right valve is of very low convexity any increase in the tension of the byssal (= pedal) retractor muscle beyond that strictly required to keep the animal in contact with the substrate tends to tilt the shell and present a large area for resistance to currents. There is thus a danger that the attachment will be broken altogether. Tilting in a purely anterior-posterior sense can be minimised by having a small anterior auricle thus bringing the byssus closer to the tilting fulcrum and minimising its leverage. This, however, does nothing to minimise upward tilting of the ventral part of the shell and a better all-round solution (text fig. 7) is elongation of the dorsal part of the anterior auricle without addition to the ventral part (i. e. development of a deep byssal notch). A further improvement is achieved by a 'rightward' slope of the anterior auricle from posterior to anterior (WALLER, 1972b). Possession of a narrow disc restricts the shell area presented to currents upon tilting.

Development of a deep byssal notch has the added advantage of putting the byssus in a position where it can resist an overturning force (such as that provided by currents meeting a convex right valve) acting on the posterior part of the shell (STANLEY, 1970). However, assuming that it is impossible to increase the force exerted through the byssus it will be necessary in this situation for the depth of the byssal notch to increase allometrically (exponent 2) in order to maintain an attachment at all, since the moment exerted by the overturning force will be proportional to the cross-sectional area of shell perpendicular to its line of action.

Obviously possession of an initially deep byssal notch will create a certain amount of leeway, in forms lacking allometric growth of the byssal notch, before attachment is actually lost. With regard to the assumption concerning the force exerted through the byssus (i. e. that it is impossible to add to the number of byssal fibres so as to increase the basic strength of the byssus, and that of the bond between byssus and substrate, and thereby allow a greater force to be exerted by the byssal retractor without breaking the attachment) it must be doubted whether this is universally applicable. The assumption is made in the interests of facilitating at least some sort of interpretation of fossil morphologies. Although the limited information on living scallops suggests that the assumption is reasonable, it is difficult to see why scallops should be constrained to retain the juvenile number of byssal threads.

The author is here only considering forms with the usual attachment position, beneath or against the sides of objects. The effective overturning moment will actually decrease during ontogeny in forms attached to the upper surfaces of objects since in this situation the overturning force has to contend

Text fig. 7: The effect of elongation of the dorsal part of the anterior auricle in restricting tilting (resulting from the combination of high byssal tension and a convex right valve) in the posterior and posteroventral shell regions (arrow = byssal force).

with the weight of the animal (scaling as L³). For all orientations on hard, smooth substrates it will be advantageous to have a minimally ornamented right valve so as to maximise the shell area in contact with the substrate and consequently maximise frictional resistance to lateral movement of the shell. On soft substrates frictional resistance will be increased by the development of some form of ornament that penetrates the substrate surface. Similar ornament on the left valve will also be of value if the substrate is so soft the the animal can insinuate itself. Otherwise it will be preferable for the ornament of the left valve to be subdued so as to minimise resistance to currents and consequently maintain lateral strain on the byssus at a tolerable level. A low convexity left valve will be advantageous for the same reason. In forms with the usual attachment position (see above) small size and thin valves will be beneficial in minimising the basic strain on the byssus resulting from the weight of the animal.

For forms tightly attached in confined spaces where the left valve comes into contact with the substrate upon gaping it will be advantageous for the hinge line to migrate ventrally so as to prevent restriction of the angle of gape with growth (YONGE, 1951).

Implied here are fissures that are essentially 'v'-shaped. Narrow, parallel-sided spaces are not colonisable, except by small forms, because shell growth rapidly makes it impossible to open the valves.

At all sizes subdued ornamentation and low convexity of the left valve together with a thin shell will allow the widest possible gape in the space available. Subdued ornament and low convexity will also maximise frictional resistance to movement if the substrate is hard and smooth (see above).

BYSSAL SWINGING

The nature of a byssal swinging mode of life needs no explanation. As in tightly fixed forms (see above) the byssus is extended between the valves at the base of the anterior auricle. In the absence of contact between the shell and the substrate to which the byssus is attached there is nothing to be gained from elongation of the dorsal part of the right valve anterior auricle and consequent production of a deep byssal notch. Strain on the byssus as the result of frictional drag between the shell and currents can be minimised by development of a low convexity posteriorly elongated disc (i. e. a shape that behaves like a windvane [KAUFMANN, 1969]) on which the ornament is subdued. Small size and thin valves will minimise the basic strain on the byssus resulting from the weight of the shell.

SWIMMING

Scallops achieve self-propulsion through the water in two ways. In one the valves clap together rapidly and a large volume of water is expelled ventrally; the shell therefore moves dorsally. Rapid adduction is also involved in the other method but here the velae (the muscular curtains formed from the inner mantle lobe of each valve) are employed in such a way as to restrict egress of the water to two small regions on either side of the auricles (see p. 17). Movement is therefore in a ventralward direction. In both processes the left valve is always uppermost. The first process, the 'escape response' of authors, is rarely observed in nature and will not be considered further. The second process is that which has come to be known as 'swimming'.

In the swimming process thrust can be maximised by possession of low convexity valves so that almost all the water trapped between the valves is finally expelled (THAYER, 1972). Low convexity also minimises drag in the brief, post-adductive planing phase by rendering the shell streamlined. Since scallops are denser than water they must generate lift in order to progress by swimming. At the expense of forward advance this can be achieved simply by tilting the dorsal part of the shell downwards and thus translating some of the thrust from the water jets into an uplifting force. By departing from a paradigmatic form for generating thrust and minimising drag, lift may also be obtained hydrodynamically in the planing phase. A strongly right convex shell thrust through the water would generate lift in the same way as an angled board but such a shape would have such a poor thrust/drag ratio that, in spite of allowing jetting of water at a lower angle, it is very doubtful whether it could travel as far horizontally for a given expenditure of energy as a low convexity shell gaining lift purely from downward thrust. A shell of low right valve convexity but with moderate left valve convexity (a 'hydrofoil' shape) would also generate lift (by the BERNOULLI Effect STANLEY, 1970]) and in this case it seems likely that the thrust/drag ratio would not be so poor as to greatly counteract the advantage of a lower 'required jetting angle' and that therefore such a shell would travel at least as far horizontally for a given expenditure of energy as a shell with both valves of low convexity, gaining lift purely from downward thrust.

Since gravity scales as L³ while thrust and lift (together with drag) only scale as L² it becomes steadily more difficult for scallops to swim as they approach large size (GOULD, 1971). The size at which the capacity is lost can be increased by various muscular allometries (GOULD, 1971; THAYER, 1972). As far as the hard parts are concerned swimming ability can be prolonged by ontogenetic increase in the umbonal angle, which serves to direct the water jets more nearly backwards and therefore maximises forward thrust (STANLEY, 1970), and by length/height allometry, which increases the 'aspect ratio' and thereby minimises drag (GOULD, 1971). Obviously an initially large umbonal angle and length/height ratio (i. e. in general terms a sub-orbicular rather than sub-ovate shape) will make for more efficient swimming in the juvenile and add to the effects of allometry in the adult. Further advantages are a thin shell (reducing weight) and subdued ornament (reducing drag). Large auricles would increase the resistance of the shell to sinking during the planing phase but would increase drag without adding anything to thrust or lift so it is very doubtful whether they would provide an overall advantage.

QUALIFICATORY SECTION CONCERNING ORNAMENT

It will have been noted in the foregoing sections that strong ornament is an advantage for stability in certain situations. A number of other ways have been suggested in which strong ornamentation, in the form of radial plicae, might be beneficial to a scallop and it is as well to evaluate whether such ornament could indeed be of use in any other way for if so it will be necessary to play down the evidence of ornament, where developed as radial plicae, in attempting to determine mode of life by means of the paradigms.

The most popular suggestions have been that plicae reduce the risk of the shell being broken (on the assumption that they increase strength in the same way as corrugations in a sheet of iron) by forces acting on it during life. On the grounds of results obtained by PREUSCHOFT et al. (1975) from stress experiments, REIF (1978) has recently asserted that the basic assumption that plicae increase the overall strength of a shell is false and he has gone so far as to say that plicae actually decrease the overall strength of a shell. Such are in fact by no means necessary conclusions from the experimental results of PREUSCHOFT et al. The experiments performed by the latter authors consisted of the application of a force above the adductor muscle (to simulate the force exerted by the adductor during swimming) of previously 'stress-coated' scallops. (A stress-coat is a lacquer which cracks to show up lines of tension and compression on a stressed body.) The observed stress pattern indicated that plicae do indeed increase strength in the ventral sector but that they reduce strength in the dorsal sector. It can therefore be said that plicae do not increase the strength of a shell throughout and, since plicae actually weaken the shell in the dorsal sector, it can be said, on the assumption that the thickness and therefore basic strength of the shell in the dorsal sector is the same as in the ventral sector (and bearing in mind the fact that a shell is only as strong as its weakest point), that the overall strength of the shell is reduced by the development of plicae. The foregoing assumption, which REIF must have made to reach such conclusions as he did from the experimental results of PREUSCHOFT et al., is in fact invalid for at least a large number of species (Pecten maximus, one of the species used by PREUSCHOFT et al., being a particularly good example of a species with markedly greater shell thickness in the dorsal sector) and taking into account the fact that the number of shell layers increases from the ventral to the dorsal margin (TAYLOR et al., 1969) it seems practically certain to be generally invalid. If it is invalid to make the above-mentioned assumption then one is in no way forced by the results of the stress-coat experiments to draw the conclusion that plicae reduce the overall strength of a shell, for such experiments do not provide quantitative data to tell us whether plicae reduce strength in the dorsal sector to a value below that of unplicated shell in the ventral sector, which is the crucial point in deciding whether plicae increase or decrease the overall strength of a shell.

The whole question of whether plicae do or do not increase the overall strength of a shell is potentially answerable through breakage experiments with plicate and non-plicate shells of equal thickness and convexity (structural strength is enhanced by increased convexity [J. CURREY, pers. comm. 1978]). The author has yet to find appropriate material for properly controlled experiments but crude hand trials using plicate and non-plicate shells of roughly equal thickness and convexity (belonging respectively to the extant species *Chlamys opercularis* and *Ch. tigerina*) indicate strongly that plicae do increase overall strength (at least for those species [probably the very great majority; see above] whose shells are dorsally thickened to the same moderate extent as in *Ch. opercularis*).

Although it now seems likely that the traditional assumption that plicae increase the overall strength of a shell is by and

large valid, this does not necessarily imply that the risk of breakage by forces acting on the shell during life is ever reduced by the development of plicae. A non-plicate shell may be quite adequate to withstand the forces. This certainly seems to be the case for the force generated in swimming (see above) for there exist actively swimming non-plicate pectinids of quite average shell thickness and convexity (e. g. Placopecten magellanicus [see STANLEY, 1970]) in which there is no evidence of shell breakage during swimming. It also seems likely that all but the thinnest-shelled of scallops could withstand wave-generated forces up to the greatest magnitudes typically encountered, without the additional strength provided by plicae (cf. Verrill, 1897). Stanley (1970) has shown that a non-plicate shell of comparable thickness to that of an average scallop, if of somewhat greater convexity (that of Mytilus edulis), is strong enough to withstand wave forces of a magnitude far greater than any likely to be experienced by the majority of scallops (those developed on an exposed inter-tidial zone – most scallops are unable to colonise the inter-tidal zone because their permanent gapes do not allow retention of water [to prevent tissue dehydration] between high tides). It is however probable that a non-plicate scallop shell of average thickness and convexity would be in great danger of being broken by predator-generated forces (as suggested originally by VER-RILL, 1897). Extra-orally feeding starfish, which are certainly a major enemy of scallops in temperate waters at the present time (MFDCOF and BOURNE, 1964; FEDER, 1970; BLOOM, 1975), are known to be capable of generating forces up to 5.5 kg (FEDER and CHRISTENSEN, 1966) in their efforts to pull bivalves apart (in order to facilitate entry of the stomach) and CARTER (1968) reports shell breakage in the genus Venerupis (thicker and more inflated than typical scallops) as the result of attempted starfish predation. G. J. VERMEIJ (pers. comm., 1978) reports that extra-orally feeding starfish are rare in the tropics and therefore may not constitute a serious threat in these regions. He adds however that durophagous teleosts are a major enemy of scallops in the tropics and such fish, which are capable of biting off chunks of coral (STANLEY, 1970) would surely be able to crush non-plicate scallops of average thickness and convexity. Of the other animals which are known to be enemies of scallops at the present time (intra-orally feeding starfish [BRUN, 1972]; plaice and cod [MEDCOF and BOURNE, 1964]; herring gulls [GUTSELL, 1931]; sea anemones, octopods and crabs [BLOOM, 1975]) it seems very likely that octopods and crabs would also be able to crush non-plicate scallops of thickness and convexity equivalent to plicate forms.

Although it seems likely that plicae would be of benefit to a scallop of average thickness and convexity as far as passive resistance to attempted predation is concerned they would be disadvantageous (increasing drag) as far as the actual evasion of predators by swimming is concerned. (The use of the swimming response as a means of escape from predators is a well documented phenomenon [e. g. THOMAS and GRUFYDD, 1976].) It is possible to imagine that a smooth shell might in fact be just as good an adaptation towards predators as a strongly plicate shell because of its greater suitability for swimming. The abandonment of plication and the development of internal costae (which must surely strengthen the shell, albeit at somewhat greater material cost than plicae) in certain genera of scallops (e. g. *Amusium*) would seem to represent an attempt to gain the best of both worlds.

Propeamussium also possesses internal costae and lacks plicae. However in this case plicae may be absent for constructional rather than functional reasons. WALLER (1972a) is of the opinion that plicae could not be developed in a shell, such as that of *Propeamussium*, with an outer prismatic layer in one or both valves.

The development of layers of divaricate fibres (which in conjunction with the usual layers of radially arranged foliae must produce a relatively strong structure by analogy with plywood) in the shells of certain non-plicate *Entolium* and *Camptonectes* species might also represent an attempt to facilitate a 'siege' policy towards predators without at the same time impairing a 'fugitive' policy.

It has been suggested that plicae might be beneficial for resisting attempted predation in ways other than by increasing shell strength. REIF (1978) has suggested that by interlocking at the commissure plicae might prevent lateral twisting of the valves by starfish. Quite apart from the fact that there is no evidence that starfish ever attempt to twist the valves apart to gain access to the soft parts (the only technique recorded being a simple pull against the action of the adductor [FEDER and CHRISTENSEN, 1966]) it must be doubted whether the long outer ligament of scallops would not perform this task quite adequately and thus obviate any need for further adaptation of the shell.

It should be noted that the scallop adductor is able to resist an opening force applied by a starfish for long periods (author's observations) so provided that the period of time which a starfish will devote to an attempt to open a scallop is sometimes less than the length of time for which the adductor can offer resistance (a not unreasonable assumption [cf. BURNETT, 1960]) increased shell strength will undoubtedly be beneficial in the context of this form of predation (as suggested on p. 20).

CARTER (1968) has suggested that in the case of a failure to open the valves widely an undulating shell margin (as is associated with plication) might serve to prevent introduction of more than a small part of a starfish's stomach into a bivalve. As STANLEY (1970) has pointed out, the stomach of a starfish is so flexible that it is in fact very unlikely that its introduction would be severely hampered by an undulating shell margin.

One further way in which it has been suggested that plicae might be beneficial to a scallop is through their enlarging effect on the area of mantle tissue and thus of respiratory surface (WALLER, 1969). It remains to be demonstrated whether a larger respiratory surface is of any particular benefit to a scallop.

To sum up the foregoing, in most of the ways suggested it is unlikely that plicae would be an advantage for a scallop. However, in the case of passive resistance to attempted predation it is quite likely that they would be of benefit to forms of average thickness and convexity, so in accordance with the approach advocated on p. 19 the author has tended to disregard the evidence of strong ornament in the form of radial plicae in attempting to determine mode of life by means of comparison with the paradigms.

Extra-orally feeding starfish, at least, have been in existence as long as scallops (they are known from the U. Ordovician [VERMEIJ, 1977]) so the possession of plicae would seem always to have been beneficial to forms of average thickness and convexity in a context other than that of stability.

Corrugations increase the strength of a sheet of material by increasing its moment of inertia (WAINWRIGHT et al., 1976). It can be seen from text fig. 8 (which shows moment of inertia values $[I_{50}]$ for a range of sinusoidally corrugated sections of arbitrary length 50 mm; the means by which I_{50} values were derived is presented in Appendix II) that for a sheet of any given thickness, corrugations of high amplitude and low wavelength give the greater increase in strength and it can therefore be inferred that plicae of high amplitude and low wavelength will be paradigmatic for passive resistance to at-

Text fig. 8: Moment of inertia (I_{50}) for a range of sinusoidally corrugated sections of length 50 mm (see Appendix II). Surfaces of equal I_{50} would all slope generally towards the left and back if drawn in.

tempted predation. It can also be seen from text fig. 8 that plical intercalation will increase strength (through shortening wavelength) and will thus be of value as the animal grows and the potential leverage which a predator can exert to break the shell increases.

It should be noted that it is only the strength in bending which is greater than that of a flat plate of equivalent thickness and then only when bending is about the x-x axis of the corrugated section. This is in fact the most likely situation in any form of predatory attack on a plicate shell. It should be further noted that corrugations also increase stiffness. This property may in fact be just as important as strength in the context of resisting attempted predation by animals, such as extra-orally feeding starfish, which attempt to pull the valves apart rather than crush them.

It seems very likely that forms of continuous comarginal ornament involving thickening of the shell (e. g. comarginal lamellae) would result in an increase in overall strength and thus be of benefit to a scallop of average thickness and convexity in the context of passive resistance to attempted predation. The evidence of such ornament as continuous comarginal lamellae has therefore been played down, in the same way as for radial plicae, in attempting to determine mode of life by means of comparison with the paradigms.

In conjunction with some form of radial or divaricate ornament and against a background of appropriate 'grain' size, discontinuous comarginal lamellae (and to a rather lesser extent continuous comarginal lamellae) tend to camouflage a shell somewhat to the human eye. It cannot yet be said whether discontinuous comarginal lamellae actually camouflage the shell to visual predators (and thus whether the development of such ornament would be beneficial to a scallop in the context of avoiding predation) so in attempting to determine mode of life by means of comparison with the paradigms the author has not disregarded the evidence of discontinuous comarginal ornament except where it is at odds with the evidence of other aspects of morphology or with ecology.

III. SYSTEMATIC PALAEOBIOLOGY OF THE 'EUROPEAN JURASSIC' PECTINIDAE AND PROPEAMUSSIIDAE

FAMILIAL DIAGNOSES

WALLER (1978) provides the following familial diagnoses:

Propeamussiidae – 'Byssate or free Pectinacea with outer, simple-prismatic calcitic layer on right valve present on main portion of disk throughout ontogeny; crossed-lamellar aragonite extending outside of pallial line, in some cases nearly to distal margins, and commonly covering hinge plate. Byssal notch without ctenolium even in early growth stages (now known to be present in one species – T. R. WALLER, pers. comm. 1980). Mantle curtains commonly without guard tentacles'.

Pectinidae – 'Byssate, cemented, or unattached Pectinacea with outer, simple-prismatic calcitic layer on right valve generally present only in early growth stages, rarely absent altogether; crossed-lamellar aragonite restricted to area inside of pallial line or absent. Byssal notch with ctenolium, at least at early growth stage. Mantle curtains bearing guard tentacles'.

Family PROPEAMUSSIIDAE TUCKER ABBOTT 1954 Genus PROPEAMUSSIUM DE GREGORIO 1884

Type species. OD; DF GREGORIO 1884, p. 1; Pecten (Propeamussium) Ceciliae DF GREGORIO 1884, p. 1; Miocene, Sicily.

AMENDED DIAGNOSIS

'Small, thin, valves nearly equally convex; sculptured with concentric lines, LV commonly with radial striae or riblets; byssal notch moderately deep to slight; right anterior auricle of some shells with radial riblets; interior with radial riblets which usually extend to middle or to margin. L. Jur. – Rec., cosmop.' (HERTLEIN, 1969: N350).

Subgenus PROPEAMUSSIUM s. s.

(Synonyms etc. Propeamusium DALL 1886 [nom. van.] Propreamusium JACKSON 1890 [nom. null.] Paramusium VERRILL 1897 Paramussium DE GREGORIO 1898 [nom. null.] Propeannessium COSSMANN and PISARRO 1906 [nom. null.] Occultamussium KOROBKOV 1937 Pseudopalliorum OYAMA 1944 Flavamussium OYAMA 1951 Actinopecten BONARELLI 1951)

AMENDED DIAGNOSIS

'Valves rather flattened, usually gaping along lateral margins; byssal notch slight; internal ribs extend about half way (farther in some) to margin. L. Jur. – Rec., cosmop.' (HERT-LEIN 1969: N350)

DISCUSSION

In the Jurassic *P. (Propeamussium)* can be divided into three groups on the following basis:

- 1. 9–13 original internal costae terminating at approximately 7/8 H; dorsal margins of right valve extended slightly beyond hinge-line.
 - (= P. (P.) pumilum).
- 2. 9–10 original internal costae terminating at approximately 7/8 H; dorsal margins of right valve extended into horn-like processes.
 (= P. (P.) laeviradiatum).
 - (-1.(1.)) (ueotradiatan).
- 3. 7–9 original internal costae increasing in number by intercalation to 18, terminating at approximately 5/6 H; ap-

proximately straight dorsal margin in right valve. (= P. (P.) nonarium).

Propeamussium (Propeamussium) pumilum (LAMARCK 1819)

Pl. 1, Figs. 1-4, 7-9; text figs. 9-12.

			Synonymy
		1819	Pecten pumilus sp. nov; LAMARCK, p. 183.
	(?)	1825a	Pecten incrustatus sp. nov; DEFRANCE, p. 253.
	(?)	1828	Pecten intusradiatus sp. nov; MUNSTER in KEFER-
			STEIN, p. 574.
	(?)	1832	Pecten infusstriatus sp. nov; MUNSTER in DE LA
			ВЕСНЕ, р. 386.
		1832	Pecten contrarius sp. nov; v. BUCH in DE LA
			ВЕСНЕ, р. 412, 423.
		1833	Pecten personatus sp. nov; GOLDFUSS in ZIETEN,
			p. 68, pl. 52, figs. 2a, 2b.
	$V^{\frac{s}{r}}$	1836	Pecten paradoxus sp. nov; MUNSTER in GOLDFUSS,
			p. 74, pl. 99, figs. 4a–f.
		1836	Peeten personatus GOLDFUSS; GOLDFUSS, p. 75,
			pl. 99, fig. 5.
		1839	Pecten personatus GOLDFUSS; V. BUCH, p. 101.
	V	1850	Pecten pumilus LAMARCK; D'ORBIGNY, p. 257.
		1852	Pecten incrustans DEFRANCE; BRONN, p. 213,
			pl. 19, figs. 5a–c.
	V	1852	Pecten personatus GOLDFUSS; QUENSTEDT, p. 505,
			pl. 40, fig. 39.
Г	on	1853	Pecten personatus GOLDFUSS; MORRIS and
			LYCETT, p. 11, pl. 1, figs. 17, 17a.
	V	1853	Pecten amalthei sp. nov; OPPEL, p. 77, pl. 4, tig. 9.
		1858	Pecten incrustatus DEFRANCE; OPPEL, p. 262.
		1858	Pecten pumilus LAMARCK; OPPEL, p. 419.
	V	1858	Pecten contrarius V. BUCH, QUENSTEDT, p. 258,
		1050	pl. 36, figs. 15–17.
		1858	Pecten undenarius sp. nov; QUENSTEDT, p. 521,
		1050	Pl. 44, lig. 14.
	Ŷ	10.50	pl 46 fige 21-24
		1860	Pecter pumilus LAMARCK: COOLLAND D 64
	2	1861	Perten amaltheus OPPEL: STOLICZKA p. 198 pl. 6
	•	1001	fig 7
		1864	Pecten pumilus LAMARCK: V. SEEBACH. p. 96.
		1867	Pecten pumilus LAMARCK: WAAGEN, D. 630.
	(?)	1868	Pecten Dumortieri sp. nov: JAUBERT, p. 234.
	?	1871	Pecten penninicus sp. nov; NEUMAYR, p. 375,
			pl. 24, fig. 4.
		1871	Pecten pumilus LAMARCK; BRAUNS, p. 396.
		1874	Pecten pumilus LAMARCK; DUMORTIER, p. 195,
			pl. 44, figs. 1–5.
		1874	Pecten Agathis sp. nov; GEMMELLARO, p. 107,
			pl. 13, figs. 3, 4.
		1876	Pecten pumilus LAMARCK; TATE and BLAKE,
			p. 364.
		1886	Pecten (Amussium) incrustatus DEFRANCE;
		100.	GEMMELLARO, pp. 163, 352.
		1886a	Pecten pumilus var. ergolus var. nov; DE GREG-
		1001	ORIO, p. 6/0, pl. 1, fig. 10.
		1891	Pecten (Amussium) paradoxus MUNSTER;
		1894	Amusium paradonum (Municipa) Maniour
		1074	D 38

- 1897 Pecten personatus GOLDFUSS; POMPECKJ, p. 779.
- 1897 Pecten cf. contrarius V. BUCH; POMPECKJ, p. 280.
- 1898 Peeten personatus GOLDFUSS; GREPPIN, p. 128.
- 1898 Pecten (Amusium) andium sp. nov; TORNQUIST, p. 31.
- 1903 Pecten (Amusium) personatus GOLDFUSS; BURCK-HARDT, p. 22, pl. 2, fig. 7.
- 1907 Pecten pumilus LAMARCK; DENINGER, p. 453.
- 1910 Amusium pumilus (LAMARCK); LISSAJOUS, p. 363, pl. 10, figs. 11, 12.

- 1912 Pecten (Variamussium) pumilus LAMARCK; DAL PIAZ, p. 246, pl. 1, fig. 14.
- 1916 Variamussium pumilum (LAMARCK); PARIS and RICHARDSON, p. 529.
- 1916 Pecten pumilus LAMARCK; BORISSIAK and IVANOFF, p. 50, pl. 3, figs. 17, 18.
- 1920 Pecten (Chlamys) Agathis GEMMELLARO; DARESTE DF LA CHAVANNE, p. 51.
- 1923 Pecten (Amussium) personatus GOLDFUSS; JODOT, p. 136, pl. 40, fig. 11a.
- 1923 Pecten (Varianussium) pumilus LAMARCK; ERNST, p. 55.
- 1924 Pecten (Variamussium) personatus GOLDFUSS; HENNIG, p. 17, pl. 2, figs. 3–6.
- 1926 Variamussium pumilum (LAMARCK); STAESCHE, p. 84.
- 1926 Chlamys amalthei (OPPEL); STAESCHE, p. 62.
- 1929 Pecten (Amussium) pumilus LAMARCK; LAN-QUINE, p. 132, 188.
- 1936 Variamussium pumilum (LAMARCK); COX, p. 19, pl. 1, fig. 18.
- 1936 Variamussium pumilus (LAMARCK); DECHAS-EAUX, p. 65.
- non 1938 Variamussium pumilum (LAMARCK); WEIR, p. 50, pl. 3, fig. 21.
 - 1950 Variamussium pumilum (LAMARCK); CHANNON, p. 248.
 - 1965 Amussium pumilum (LAMARCK); DAHM, p. 29.
 - 1966 Variamussium pumilum (LAMARCK); BEHMEL and GEYER, p. 28.
- non 1973 Chlamys (Acquipecten) amalthea (OPPEL); LEN-TINI, p. 27, pl. 15. fig. 9.
 - 1974 Propeamussium (Parvamussium?) geelvinki sp. nov; SKWARKO, p. 80, pl. 26, figs. 2, 3.
 - 1977 Paraniussium pumilus (LAMARCK); DIETL, pl. 2, fig. 3.
 - 1978 Parvamussium pumilus pumilus (LAMARCK); HOLDER, p. 4, pl. 5, fig. 6, text figs. 1–3.
 - 1978 Parvamussium pumilus atlasense subsp. nov; HOLDER, p. 7, pl. 1, figs. 1–5, text fig. 4.
 - 1978 Parvamussum personatum (GOLDFUSS); HOL-DER, p. 9, pl. 1, figs. 6–9, pl. 2, figs. 1–4, pl. 4, figs. 1–6, text figs. 1, 5, 7 (pars), 8.
 - ? 1978 Parvamussium aff. personatum (GOLDEUSS); HOLDER, p. 20, pl. 5, figs. 1–4, text fig. 11.
 - ? 1978 Parvanussium dumortieri sp. nov; HOLDER, p. 22, pl. 4, fig. 7.

Lectotype of *Pecten pumilus* LAMARCK 1819, p. 183 designated by HOLDER, 1978, p. 4, text fig. 2a; MN unnumbered; H: 6.1, L: 5.5; ?Toarcian, Swabia (HOLDER, 1978); one of five syntypes preserved in MN.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'P. testa minima, rotundata-ovata radiis 10 ad 12.'

2. AMENDED DIAGNOSIS

Distinguished from *P. (P.) laeviradiatum* by the larger modal number of internal costae, relatively insignificant dorsal extension of the auricles beyond the hinge-line and by the finer and more numerous costae on the left valve. Distinguished from *P. (P.) nonarium* by the lack of intercalary internal costae and by the termination of the internal costae somewhat closer to the ventral margin.

Text fig. 9: *Propeanussium (P.) pumilum –* frequency distribution for number of internal costae.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long at all sizes, maximum height 42 mm (DUMORTIER, 1874). Umbonal angle very variable (text fig. 10) increasing slightly during ontogeny. Disc flanks low.

Equilateral, equivalve, low convexity.

Intersinal distance greater in left valve than right. Small byssal notch becoming relatively smaller during ontogeny.

Auricles well demarcated from disc, moderate in size, anterior slightly larger than posterior. Dorsal margin of right anterior auricle extended slightly beyond hinge line. Posterior auricles meeting hinge line at an obtuse-right angle, anterior auricles meeting hinge line at an acute-right angle. Anterior auricle of right valve meeting disc at a right angle, other auricles meeting disc at an acute angle.

Shell thin. Shell structure consisting of a maximum of 5 layers (HOLDER, 1978) with the fourth and fifth developed only on the left valve. Innermost layer (layer 1) of comarginally orientated crystallites overlying radially orientated crystallites of layer 2, which is locally thickened to form radial costae, 9–13 in number (text fig. 9), terminating at about 5/6 total height. Layer 3 of similar structure locally thickened to form comarginal striae. Layers 4 and 5 composed of unordered crystallites locally thickened to form a reticulate ornament with intercalary striae, closer in layer 5.

Text fig. 10: Propeamussium (P.) pumilum – length/umbonal angle.

4. DISCUSSION

HOLDER (1978) has recently located five syntypes of 'P.' pumilus LAMARCK (MN) and shown them to be typical representatives (with 11 internal costae) of the species with 9-13 internal costae described in section 3. 'P.' paradoxus MUNS-TFR is simply representative of the less common variants with up to 13 internal costae. 'P.' personatus GOLDFUSS was said to include forms with up to 14 internal costae but since the type material was destroyed in the 2nd. World War, this cannot be confirmed. HOLDER'S (1978) opinion that MUNSTER'S species (from the Toarcian) and GOLDFUSS's species (from the Aalenian) can be distinguished by the lack of a byssal notch, equality of the auricles, lack of dorsal extension of the anterior auricle of the right valve and perpendicular posterior margin of the posterior auricle in the former species is not vindicated by the original figures. Neither does there seem to be any material evidence to support HOLDER's claim amongst the generally incompletely preserved syntypes of 'P'. paradoxus (GPIB 61 Ib, 611c; e. g. Pl. 1, figs. 3, 9). HOLDER's distinction of Toarcian from Aalenian forms on the basis of UA (105°-120° cf. 90°-100°) is invalid since STAESCHE (1926) cites a Toarcian specimen with UA: 96°. On his own admission slight differences in shell structure may well be due to imperfect preservation.

The author has been unable to trace the original descriptions of 'P.' intusradiatus MUNSTER, 'P.' intusstriatus MUNS-TER and 'P.' contrarius v. BUCH but HOLDER has figured one of the syntypes (HM) of the latter, showing it to be indistinguishable from Propeamussium (P.) pumilum, and included the others in synonymy with LAMARCK's and GOLDFUSS' species. WEIR'S (1938) record of 'Varianussium' pumilum is however more reminiscent of Radulopecten vagans while MORRIS and LVCFTT'S (1853) record of 'Pecten' personatus from the Bathonian has been shown by COX and ARKELL (1948) to refer probably to specimens of Camptonectes.

The syntypes of 'P'. amalthei OPPEL (BSPHG) are very poorly preserved but one specimen (BSPHG AS VIII 166; Pl. 1, Fig. 8) shows 10 clear internal costae which, combined with the characteristic left valve exterior ornament, leaves little doubt that it should be included in P. (P.) pumilum. STOLICZKA'S (1861) record of OPPEL'S species is almost certainly a misnomer for Chlamys (Ch.) textoria while LENTINI'S (1973) record resembles Ch. (Ch.) pollux. 'P.' Agathis GEM-MELLARO was said to be close to OPPEL'S species and the description of asymetric right and left valve ornament confirms the similarity.

'P.' Dumortieri JAUBERT was erected without diagnosis for an unfigured specimen from Var (Provence) designated as 'P.' personatus by DUMORTIER. It was said to resemble the latter in its internal costation and seems likely to have been one of the typically large specimens of P. (P.) pumilum frequently recorded from Var. HOLDER's use of dumortieri for a specimen (MHNL 9075) referred to 'P.' pumilus by DUMOR-TIER (1874) must now be rejected as a secondary homonym in Propeamussium. The specimen may however be worthy of a specific distinction on account of its UA (more than 125°).

P.' penninicus NEUMAYR from the Oxfordian resembles *P.* (*P.*) *pumilum* in apparently having 11 internal costae but differs in the unusually strong reticulate ornament on the left valve. HOLDER (1978), who has studied the types in Vienna, considers however that this may be due to abrasion and refers another similar specimen from the same stage to '*Parvamussium*' aff. *personatum*.

'P'. undenarius QUENSTEDT and P. ('Pa'?) geelvinki SKWARKO with 11 and 12 internal ribs respectively show no obvious differences from P. (P.) pumilum and while 'P.' Paronae DE GREGORIO is only known from two specimens, both less than 5 mm in height, there can be little doubt as to the affinities of the species. 'Pa.' sp. HOLDER is only distinguished by its low UA (90°) which by the evidence of the figure seems to be the result of abrasion.

P.' (*Amusium'*) andium TORNQUIST was based on specimens collected and referred to *'P.' pumilus* by GOTTSCHE (1878) which were said to differ from the latter species by the lack of radial ornament. It seems highly likely that they were merely the right valves of *P. (P.) pumilum*.

Mention of 11 internal costae in the original description of 'P.' incrustatus DEFRANCE strongly suggests that the species is synonymous with P. (P.) pumilum.

5. STRATIGRAPHIC RANGE

P. (P.) pumilum is recorded from the U. Pliensbachian of England (BM L94170-3, SM J42033), France (LANQUINE, 1929), Germany (BRAUNS, 1971; OPPEL, 1853), Sicily (GEM-MELLARO, 1874), Algeria (DARESTE DE LA CHAVANNE, 1920), Chile (MORICKE, 1894), and Spain (BEHMEL and GEYER, 1966). The latter authors also record the species as occurring rarely in the L. Pliensbachian but since there are no supporting figures, some doubt must remain. Other than in the U. Pliensbachian of E. Spain and Sicily, P. (P.) pumilum is rare before the Toarcian. The species is thereafter locally common until the L. Bajocian but definite U. Bajocian records are completely lacking. Bathonian records are limited to DECHASEAUX (1936), DENINGER (1907) and DAL PIAZ (1912) but only the latter produces unequivocal evidence of a Bathonian specimen in the form of a figure. GREPPIN's (1898) record from the 'Grande Oolithe' of Switzerland was re-assigned to the Sauzei zone (L. Bajocian) by STAESCHE (1926) and MORRIS and LYCETT'S (1853) record from the Great Oolite was shown by Cox and ARKELL (1948) to be unsupported by any material corresponding to their description (see Section 4). It is clear that *P. (P.) pumilum* is a rare species after the L. Bajocian and occurrences after the Bathonian are limited to two equivocal specimens from the Oxfordian of the Balkans (NEUMAYR, 1871) and a further one from the same stage in Swabia (Hölder, 1978).

6. GEOGRAPHIC RANGE

P. (P.) pumilum is widespread in Europe (text fig. 11) and on a world scale spans a palaeolatidudinal range of about 40° (text fig. 12). Although very cosmopolitan the species is not known worldwide, contrary to the opinion of STAESCHE (1926). There are notable absences in the L. Jurassic of Australasia and western N. America despite the widespread development of appropriate sedimentary facies (see Section 8) in these regions. Yet, wherever P. (P.) pumilum arose, migration must have occurred between Europe and S. America during the L. Jurassic to explain the observed distribution but the most obvious migration routes (via N. America/Arctic, and via the W. Pacific) are precluded because of the lack of fossil evidence en route. HALLAM (1973) considered that the distribution of the aberrant pectinid Weyla, restricted to the western margins of the Americas in the L. and M. Lias but also occurring in the Ethiopian Province in the U. Lias, indicated the development of a marine connection between Argentina, Antarctica and S. America in the Toarcian. The distribution of the ammonite Bouleiceras, restricted to the Ethiopian Province and S. America in the L. Toarcian (HILLE-BRANDT, 1973) supports such a view and it seems also to provide a good explanation for the distribution of P. (P.) pumilum. However, occurrences of the species in the M. Lias of both Chile (MORICKE, 1894) and Europe indicate that a marine connection was established at least by the U. Pliensbachian while occurrences of Weyla in the Jamesoni zone of Spain (DUBAR, 1925) indicate a seaway in the L. Pliensbachian.

DAMBORENEA and MANCENIDO (1979) consider that the latter occurrences in fact indicate the existence of a direct marine connection (through central America) during the Lias.

Text fig. 11: Propeamussium (P.) pumilum - European distribution.

During the Bajocian *P. (P.) pumilum* extended its range along the southern margins of Tethys but was still unable to penetrate Asia or western N. America despite the undoubted development of a marine connection between the latter and Europe by this time (HALLAM, 1975a). This strongly suggests an ecological exclusion and the aviculopectinid *Otapiria*, restricted to the Pacific region (HALLAM, 1977) and occurring in comparable facies, may have competitively restricted P. (P.) pumilum.

The broad distribution of *P*. (*P*.) *pumilum* provides some support for the view (see Section 8) that the species may have had a pseudo-planktonic mode of life.

Text fig. 12: Propeamussium (P.) pumilum - World distribution (Pliensbachian reconstruction).

7. DESCRIPTION OF ECOLOGY

P. (*P.*) pumilum first occurs commonly in U. Pliensbachian marls in E. Spain and Sicily where it occurs with *Lima*, *Oxytoma* and *Placunopsis* together with abundant brachiopods, gastropods and cephalopods. It subsequently becomes very abundant at certain horizons in the L. Toarcian bituminous shales (Posidonienschiefer) of S. W. Germany, notably above the Oberer Stein at Göppingen where it forms a shell bed. The associated fauna is largely restricted to abundant *Bositra bronni* and *Pseudomytiloides dubius* together with ammonites and belemnites. The maximum height of 9.5 mm (GP1T) is less than in contemporaneous deposits in N. Germany (STAESCHE, 1926) while specimens from Var (Provence) reach a height of 42 mm (DUMORTIER, 1874).

The species is less common in the U. Toarcian but occurs in the condensed sands and ironstones of Lower Saxony (ERNST, 1923).

In the Opalinum zone (Aalenian) P. (P.) pumilum occurs fairly commonly in the Northampton Sand Ironstone, a chamosite oolite, in association with a diverse bivalve fauna including Camptonectes (C.) auritus, Eopecten abjectus, Entolium, Lima, Gervillia, Myophorella, Ceratomya and Astarte. Subsequently it occurs commonly in the Murchisonae zone of S. Germany which is developed in the same facies. GOLDFUSS' synonym has provided a name for one terrigenous intercalation into the sequence of Aalen (the Personatensandstein) where P. (P.) pumilum crowds the bedding planes to the virtual exclusion of other fossils. The maximum height attained is 16 mm (GPIT).

In the Aalenian of the Cotswolds P. (P.) pumilum occurs sporadically in all the oolitic horizons. In the Murchisonae zone at Cornwell (Oxon.) it is found very abundantly in a low diversity shell bed (Sylvester-Bradley, 1968). In the L. Bajocian of the same region it locally forms shell beds in the Notgrove Freestone.

P. (P.) pumilum is not known to be common elsewhere and it is conspicuously rare in the deep water pelagic limestones of the peri-Mediterranean region.

It is clear from the foregoing that there is an inverse correlation between the abundance of P. (P.) pumilum and the diversity of the associated fauna. It is however found in a wide variety of sedimentary facies although P. (P.) laeviradiatum is a rare associate. Most accumulations of P. (P.) pumilum consist of disarticulated valves but the incidence of abrasion and breakage is low enough to suggest minimal transport from the life position.

8. INTERPRETATION OF ECOLOGY

P. (P.) pumilum forms part of the faunal association which characterises laminated bituminous shales (HALLAM, 1976) and whose low diversity is thought to be indicative of anaerobic or near-anaerobic conditions close to the sea floor. The principle formation of this type in which *P. (P.) pumilum* occurs (the Posidonienschiefer) is dominated by the bivalves *Bositra* and *Pseudomytiloides* together with ammonites and belemnites. The last two were almost certainly planktonic and thus independent of bottom conditions. *Pseudomytiloides* is frequently found in large numbers around driftwood to which *Pentacrinus* is also attached (HAUFF, 1953) and it has been suggested that the inoceramid gained independence of the sea floor by adopting a byssate, pseudoplanktonic mode of life. Floating seaweed is invoked as a substrate to explain

accumulations of Pseudomytiloides in the absence of driftwood. A planktonic mode of life has also been suggested for Bositra (JEFFERIES and MINTON, 1965) based largely on its independence of sedimentary facies and presence in areas where benthos is sparse, such as euxinic black shales and deep water pelagic limestones. JEFFERIES and MINTON favour a genuinely planktonic, rather than pseudoplanktonic, mode of life for Bositra, owing to the lack of shell features indicative of byssal attachment. The association of P. (P.) pumilum with this supposedly planktonic fauna has led to a persistent belief among German palaeontologists (dating back to HAUFF, 1921) that this species was likewise planktonic. HAUFF considered that P. (P.) pumilum was byssate and thus if epibenthic at the mercy of fluctuating bottom conditions. He therefore concluded that it must be pseudoplanktonic in the Posidonienschiefer, ignoring the fact that byssate pectinids may still unattach themselves and escape from locally unfavourable bottom conditions by swimming. STAESCHE (1926) also considered that the smaller size of specimens from the Posidonienschiefer was a reflection of byssal attachment to floating seaweed, with the implication that the byssus was only strong enough to support small individuals. However, Recent byssally suspended pectinids (e. g. Gloripallium pallium) commonly reach a height of 60 mm (WALLER, 1972b) and it seems much more likely that small size in the Posidonienschiefer was the result of oxygen deficiency, all the bivalves being less than 30 mm in height. At present it cannot be said whether low oxygen tension directly caused stunting or simply led to high juvenile mortality.

A. SEILACHER (pers. comm., 1977) reports that P. (P.) pumilum has been found associated with driftwood but the author's field observations provide no confirmation of this. More telling evidence against a pseudoplanktonic mode of life is provided by the rarity of *P*. (*P*.) *pumilum* in the deep water pelagic limestones in which Bositra is common. This is contrary to expectation for a pseudoplanktonic bivalve and it is the author's impression that unlike Bositra and Pseudomytiloides, P. (P.) pumilum does not occur uniformly throughout the Posidonienschiefer but is concentrated at a few levels, suggesting a dependence upon bottom conditions. HALLAM (1976) has emphasised that truly anaerobic conditions may only have existed within the sediment and that just above the sediment/water interface there was occasionally enough oxygen to support a eurytopic fauna. Indeed truly epibenthic organisms (Pseudodiadema and rhynchonellid and discinid brachiopods) are known from the Posidonienschiefer and KAUFFMAN (1978) has now made the suggestion that even Bositra and Pseudomytiloides may have lived on or only slightly above the sea floor.

There is no evidence for a pseudoplanktonic mode of life in living *Propeamussium*. KNUDSEN (1967) reports both pelagic and benthonic organisms in the stomach contents of *P. sibogai* and considers that the pelagic fraction was probably captured during swimming activity. Most of the known species have been dredged from the sea bed in the bathyal and abyssal zones and appear to have been free living rather than by ssate when adult (KNUDSEN, 1967, 1970). WALLER (1971) reports no trace of a pedal retractor muscle scar in extant species. The only Recent pectinid known to have a pseudoplanktonic mode of life is *Leptopecten latiauritus monotimeris* 27

(see CLARK, 1971). It resembles *P. (P.) pumilum* in its small size but differs in its strong prosogyrous inclination, a feature considered to be characteristic of a loosely suspendes mode of life (KAUFEMAN, 1969).

It may therefore be concluded from the foregoing that P. (P.) pumilum was epibenthic and unattached for most of its life and able to live on a wide variety of substrates under variable conditions of oxygen tension and turbulence. Its particular abundance in association with low diversity faunas indicates an opportunistic adaptive strategy (LEVINTON, 1970). Mutual exclusion from P. (P.) laeviradiatum (see p. 31) may have been due to competition.

The large size of specimens from Var compared to those from more northerly palaeolatitudes may be the result of enhanced growth rates due to increased temperature, as has been observed in Recent bivalve species on approaching the equator (NICOL, 1967). Such an effect coupled with the pattern of ontogenetic increase in the number of radial striae could account for the relatively coarse ornament in large specimens from Morocco (HOLDER, 1978).

9. FUNCTIONAL MORPHOLOGY

The small adult size, thin shell, low convexity, subdued ornament, ontogenetic decrease in the relative size of the byssal notch and ontogenetic increase in the umbonal angle place P. (P.) pumilum close to a paradigm for a short byssate juvenile phase followed by a reclining/swimming phase in a low energy environment. Such a mode of life is well in accord with the palaeoecology of the species in such deposits as the Posidonienschiefer. The species appears to have been less well adapted to the higher energy environments in which it occurs (e. g. cross bedded oolites and sandstones) but was presumably able to survive frequent burial and disturbance by the swimming response.

10. ORIGINS AND EVOLUTION

If it is assumed (see p. 32) that *P. (P.) laeviradiatum* is the descendant of *P. (P.) pumilum* (rather than vice versa) then there remain no plausible ancestors for *P. (P.) pumilum* in the Jurassic. The U. Palaeozoic genus *Pernopecten* seems, by the evidence of shell structure, to be the ultimate source of Mesozoic *Propeamussium* (WALLER, 1971).

There are no obvious phyletic trends in *P. (P.) pumilum.* Specimens derived from the same limestone facies (to rule out ecophenotypic variation) show a phyletic reduction in maximum height from 42 mm in the L. Toarcian (DUMORTIER, 1874) to 23 mm in the Aalenian (OUM J14491) to 18 mm in the L. Bajocian (YM 502) but these specimens also lie on a S-N line (from respectively S. France to S. England to N. England) so it is possible that a latitudinal temperature gradient may be the causal factor (see Section 8). However, a phyletic reduction in maximum height would be concordant with the evidence from eurytopy and opportunism which indicates the general prevalence of 'r' selection (GOULD, 1977).

No convincing deterministic explanation is available for the post L. Bajocian decline of *P*. (*P*.) *pumilum*.

Propeamussium (Propeamussium) laeviradiatum (WAAGEN 1867)

Pl. 1, Figs. 5, 6, 10, 12; text figs. 13-17

Synonymy

- v 1867 Pecten laeviradiatus sp. nov.; WAAGEN, p. 633, pl. 31, figs. 4a, 4b.
 - 1883 *Pecten cornutus* QUENSTEDT; WHIDBORNE, p. 498, pl. 16, figs. 1, 2, 2a (non QUENSTEDT sp).
 - 1883 Pecten laeviradiatus WAAGEN; WHIDBORNE, p. 500.
- v* 1883 Pecten fenestralis sp. nov.; WHIDBORNE, p. 500.
- 1886 *Pecten (Amusium) subpersonatus sp. nov.; VACEK,* p. 111, pl. 19, figs. 5, 6.
- 1886d Pecten Animensis sp. nov.; DF GREGORIO, p. 21, pl. 13, figs. 8, 10–12, 16.
- 1893 Pecten (Amusium) subpersonatus VACEK; BOTTO-MICCA, p. 174.
- 1898 Pecten dionvillensis sp. nov.; BENECKE, p. 25, pl. 1, fig. 4.
- 1916 Variamussium fenestrale (WHIDBORNE); PARIS and RICHARDSON, p. 528.
- v 1916 Variamussium laeviradiatum (WAAGEN); PARIS and RICHARDSON, p. 528, pl. 44, figs. 1a-c.
- v 1926 Varianussium laeviradiatum (WAAGEN); STAESCHE, p. 86, pl. 6, figs. 8, 9.
- 1929 Pecten (Amusium) laeviradiatus WAAGEN; LANQUINE, p. 200.
- ? 1942 Pecten (Variamussium) coloradoensis WEAVER; LEANZA, p. 176, pl. 7, figs. 3, 5, pl. 10, fig. 3.
- (?) 1959 Variamussium habunokawense KIMURA; TAM-URA, p. 60, pl. 6, figs. 20–22.
- (?) 1961 Propeamussium babunokawensis (KIMURA); HAYAMI, p. 255.
- ? 1972 Parvamussium (Parvamussium) donaiense MAN-SUY; HAYAMI, p. 197, pl. 34, figs. 11, 12, pl. 38, figs. 6, 7.
 - 1978 Varientolium cf. laeviradiatum (WAAGEN); HOLDER, p. 23, text fig. 10d, pl. 3, fig. 6.

Lectotype of *Pecten laeviradiatus* WAAGEN 1867, p. 633, pl. 31, figs. 4a, 4h designated herein; BSPHG AS XXII 29; Pl. 1, Fig. 5 herein; Bajocian, 'Sowerbyi' zone (Discites-Laeviuscula zones); Gingen, Württemberg. Paralectotypes; the 3 other syntypes (BSPHG); also 'Sowerbyi' zone, Gingen.

I. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Flachgewölbte Schalen, beide Klappen gleich, auf denen vom Wirbel sieben scharfe mit senkrechten Seiten abfallende Rippen ausstrahlen. In gewissen Entfernungen vom Wirbel setzen sich anfangs haarfein, dann stärker werdend, genau die Mitte zwischen den vorhergehenden haltend, neue Rippen ein, und so mehrmals, so daß man am Rande 30 und mehr Strahlenrippen zählen kann. Diese Rippen haben auf ihrem Rücken eine von Kanten begrenzte ebene Fläche, die vollkommen glatt, ohne eine Spur von Anwachsstreifen ist. Auf den ganz flachen Zwischenräumen aber bemerkt man äußerst feine concentrische Anwachsstreifen. Der Steinkern ist durchaus glatt.

Nicht selten und sehr bezeichnend für die Zone des Amm. Sowerbyi von Pommer (Franken), Gingen (Württemberg), Aselfingen (Baden), Betzenau und Schambelen (Canton Aargau).

Scheint im Pariser, Nordenglischen und Norddeutschen Becken zu fehlen.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of *P. (Propeamus-sium)* by the horn-like dorsal extensions of the right valve auricles and by the generally coarser ornament.

Text fig. 13: Propeanussium (P.) laeviradiatum – height of anterior auricle dorsal of hinge line/height.

Text fig. 14: Propeanussium (P.) laeviradiatum – number of external costae on left valve/height.

3. AMENDED DESCRIPTION

Essentially similar to *P. (P.) pumilum* but differing by the diagnostic horn-like auricles (Pl. 1, Fig. 12) which increase in height from about 3 mm (H: 10) to 6 mm (H: 28), maximum 6.5 mm (text fig. 13). Also differing in the tendency to develop a sub-orbicular disc (text fig. 15) near the maximum height of 30 mm (BM L42019), in the slightly smaller mean L/UA (text fig. 16), in the smaller modal number of internal costae (9, range 9–10) and in the less numerous radial costae on the left valve (13–27 at H: 10, increasing by intercalation to a maximum of 37 at H: 30 [text fig. 14]) which sometimes form a reticulate pattern with the comarginal striae (Pl. 1, Fig. 6). The shell is somewhat more robust than that of *P. (P.) pumilum* but still fairly thin.

4. DISCUSSION

The earliest available name for the species described in Section 3 is '*Pecten*' *laeviradiatus* WAAGEN. Although the four syntypes (BSPHG), all left valves, are seen only from the exterior there can be no doubt that they possess the internal costae of the species described above; external costation and metric proportions (1) are within the range of the latter. A lectotype (BSPHG AS XXII 29; Pl. 1, Fig. 5) is herein designated.

WHIDBORNE (1883) thought that the smooth right valves of Propeamussium (P.) laeviradiatum belonged to a separate species and referred them to 'Pecten' cornutus QUENSTEDT (1858). It was the present author's previous opinion (JOHNson, 1980) that the single known type of QUENSTEDT's species (from the Oxfordian) is in fact a late representative of P. (P.) laeviradiatum. However, re-examination of the specimen (GPIT 4-74-10; Pl. 1, Fig. 11) has failed to confirm the existence of the internal costae previously thought to have been present and while metric proportions (2) are largely indistinguishable from P. (P.) laeviradiatum it now seems likely that the specimen is an example of Entolium. Nevertheless other specimens with internal costae and left valve ornament identical to that of P. (P.) laeviradiatum are known from the U. Jurassic. 'Variamussium' habunokawense KIMURA; TAMURA from the U. Jurassic of Japan seems indistinguishable from P. (P.) laeviradiatum but since the stratigraphic horizon (cf. Section 5) is so high and it is not yet clear whether the characteristic dorsally extended right valve auricles of P. (P.) laeviradiatum are present it is perhaps unwise to assume that this form is conspecific. KIMURA's original description has proved impossible to trace.

'P.' fenestralis WHIDBORNE was separated from 'P.' laeviradiatus on the basis of strong comarginal ornament on the left valve and a larger number of internal costae. However WAAGEN's original description in fact specifies comarginal ornament. Museum specimens show a variable development of this feature (Pl. 1, Figs. 5, 6) and it seems likely, as indeed WHIDBORNE suggested, that this is due to differing amounts of post-mortem abrasion. WHIDBORNE's figured specimen of 'P.' fenestralis (SM J4758) is seen only from the exterior and there is no other appropriately preserved material to evidence WHIDBORNE's claim of up to 12 internal costae in this species. 'P.' fenestralis is also inseparable by its metric proportions (3).

Text fig. 15: Propeamussium (P.) laeviradiatum - height/length.

'P.' ('Amusium') subpersonatus VACEK was said to possess only 7 internal costae. However, these could only be seen through the right valve and so the number may be an underestimate. The left valve exterior ornament is identical to that in *Propeamussium (P.) laeviradiatum*. Dorsally extended auricles are absent in the figured specimen but this is clearly due to breakage.

'P.' Animensis DE GREGORIO was erected for specimens which VACEK referred to 'P.' ('Amusium') subpersonatus but of which only the exterior of the left valve was visible. The ornament is however identical to that of P. (P.) laeviradiatum. Similarly, 'P.' dionvillensis BENECKE can be assigned to the latter species even though only the exterior of the left valve is figured.

It has been impossible to trace the original description of 'P.' ('Variamussium') coloradoensis WEAVER but LEANZA'S (1942) description of the latter, specifying 13-19 external costae increasing by intercalation and an umbonal angle of 105-115°, is indistinguishable from P. (P.) laeviradiatum. However, the figures do not reveal any sign of the horn-like auricles and this fact together with the anomalously early stratigraphic horizon (Oxynotum zone) casts doubt on the affinity of 'P.' ('V.') coloradoensis with P. (P.) laeviradiatum. The original description of 'Parvamussium' ('Pa.') donaiense MANSUY is also untraceable. HAYAMI'S (1972) description of the species from the Toarcian of Vietnam specifies that the only difference from P. (P.) laeviradiatum is the presence of fewer (7 or 8) internal costae. In the absence of sufficient material to make an adequate assessment of variation in this character it is impossible to judge whether such forms should be accorded specific status. They may merely be geographic variants.

5. STRATIGRAPHIC RANGE

Apart from a dubious record from the Sinemurian (see Section 4), the earliest record of *P. (P.) laeviradiatum* is a single specimen (BM LL1579) from the U. Pliensbachian of Vieux-

Text fig. 16: Propeamussium (P.) laeviradiatum - length/umbonal angle.

pont (Normandy). Only one museum specimen (BM unnumbered, from Beaminster, Dorset) is known from the Toarcian but WHIDBORNE (1883) records the species from the U. Toarcian of Yeovil, Somerset where the appropriate facies (see Section 8) are well developed. HAYAMI (1972) records a closely related, if not conspecific form (see Section 4), from the Toarcian of Vietnam.

P. (P.) laeviradiatum is locally common in the Aalenian and in the Bajocian until the Laeviuscula zone (L. Bajocian). There are no records from the U. Bajocian and Bathonian records are limited to 3 specimens (BM L97035-7) from Stroud, Gloucestershire whose HAAD/H (4) is inseparable from *P. (P.) laeviradiatum*, but whose high L/UA may imply a specific distinction. Specimens from Japan referred to by TAMURA (1959) and HAYAMI (1961) may constitute records from the U. Jurassic (see Section 4).

6. GEOGRAPHIC RANGE

P. (P.) laeviradiatum occurs sporadically over a large part of the European region (text fig. 17). Its distribution is almost certainly related to the localised development of appropriate sedimentary facies (see Section 8). Material from Argentina (LEANZA 1942), Vietnam (HAYAMI 1972) and Japan (TAMURA 1959, HAYAMI 1961) may evince an extra-European distribution (see Section 4).

7. DESCRIPTION OF ECOLOGY

In Europe P. (P.) laeviradiatum first occurs commonly in condensed sandy limestones of the Opalinum zone in Dorset, where it attains a maximum height of 30 mm (BM L42019). The associated benthic fauna is dominated by the bivalves Pseudopecten (Echinopecten) barbatus, Eopecten, Ctenos-

Text fig. 17: Propeamussium (P.) laeviradiatum - European distribution.

treon, Neocrassina and Placunopsis and the gastropod Pseudomelania together with abundant brachiopods of the form genera 'Rhynchonella', 'Terebratula' and 'Zeillerua'. P. (P.) laeviradiatum also occurs in a similar sedimentary and faunal association, albeit somewhat less commonly, in the Murchisonae and Concavum zones of S. England. It is, however, absent from the Northampton Sand Ironstone (Opalinum zone) where P. (P.) pumilum and Entolium (E.) corneolum are common.

P. (P.) laeviradiatum is recorded commonly with Ps. (Ec.) barbatus in the Aalenian sandy limestones of Provence (LAN-QUINE, 1929) but is absent from the Aalenian of S. Germany where the stage is developed in sands and shales overlain by chamositic ironstones containing abundant P. (P.) pumilum and E. (E.) corneolum. However, in the L. Bajocian of S. Germany P. (P.) laeviradiatum is found commonly in the Sowerbyi-Banke (Discites and Laeviuscula zones) where it reaches a maximum height of 22.5 mm (GPIT). The sediments are condensed marly oolites containing a diverse bivalve fauna but few ammonites. In limonitic sandy limestones of equivalent age in the Bristol district P. (P.) laeviradiatum is also common in association with an abundant and diverse fauna of ammonites, bivalves and brachiopods.

The only records from the peri-Mediterranean region are from Provence (see above) and the Aalenian of the Italian Alps (BOTTO-MICCA, 1893; DE GREGORIO, 1886d; VACEK, 1886) where the sediments are condensed limestones, probably formed on a submarine rise. The associated fauna consists of abundant ammonites and brachiopods, small gastropods and more rarely the bivalves *Ps. (Ec.) barbatus, E. (E.) corneolum* and *Eopecten.*

8. INTERPRETATION OF ECOLOGY

The coarse – grained condensed deposits in which P. (P.) laeviradiatum occurs most commonly are indicative of high energy conditions with a low sediment input. The occasional presence of locally derived conglomerates (e. g. Opalinum zone in Dorset) indicates active erosion while limonitic overgrowths suggest periods of non-deposition. The fauna associated with P. (P.) laeviradiatum exhibits a range of adaptations for achieving stability in high energy conditions. Ps. (Ec.) barbatus possesses a strongly spinose right valve which probably served to grip the sediment and prevent current scour (see p. 83). *Eopecten* has an exceptionally deep byssal notch which indicates that byssal fixation could have been maintained throughout ontogeny. Ctenostreon has a thick shell whose weight would have resisted overturning by currents. The terebratulid and rhynchonellid brachiopods were all attached by means of a pedicle which probably performed the same stabilising function as the byssus in Eopecten. Contrary to Rudwick's (1970) opinion, THAYER (1975) has shown that the pedicle attachment strengths of both terebratulid and rhynchonellid brachiopods compare favourably with byssate bivalves and are sufficient to anchor the animal in very high energy environments. The paucity of infauna in deposits containing P. (P.) laeviradiatum may be due to the difficulty of avoiding exhumation by current scour.

P. (*P.*) laeviradiatum is rarely found with the closely related eurytopic species *P*. (*P.*) pumilum nor is the morphologically similar pectinid Entolium (*E.*) corneolum a common associate. However, both of the latter species occur in condensed chamosite oolites whose depositional environment (high energy, low siliciclastic input) would appear to have been ideal for *P.* (*P.*) laeviradiatum. The absence of *P.* (*P.*) laeviradiatum from such facies is therefore strongly suggestive of competitive exclusion by either or both of *P.* (*P.*) pumilum and *E.* (*E.*) corneolum. This factor together with an intolerance of high rates of sedimentation probably accounts for the lack of *P.* (*P.*) laeviradiatum in S. Germany before the Bajocian. The rarity of the species in the peri-Mediterranean region is clearly due to the widespread development of low energy, pelagic limestone facies.

Most modern species of the morphologically similar genus *Amusium* live in the deep sea (KNUDSEN, 1967) but at least two (*A. pleuronectes* and *A. japonicum*) are known to migrate into shallow water for the purpose of spawning (B. MORTON, pers. comm. 1978).

Apart from the fact that it can recess into the sea bed (B. MORTON, pers. comm., 1978) little is known of the reclining position of *Amusium*. Further information relevant to *P*. (*P*.) laeviradiatum may be gained through a comparison with the 'window pane oyster' *Placuna placenta* which at least in the form of the disc resembles *P*. (*P*.) laeviradiatum. *Pl. placenta* reclines at a slight angle to the sea bed with the dorsal third of the shell covered by sediment (HORNELL, 1909). This apparently serves to stabilise the shell against current action and a similar reclining position can perhaps be envisaged for *P*. (*P*.) laeviradiatum with the dorsally extended auricles obviating any need for burial of the disc itself.

The usual occurrence of *P. (P.) laeviradiatum* in moderate numbers with a high diversity fauna suggests that it was an equilibrium species (LEVINTON, 1970).

9. FUNCTIONAL MORPHOLOGY

The following features of the disc are paradigmatic for a bivalve reclining in a high energy environment:

- 1. Large size
- 2. Thick shell
- 3. Strongly ornamented right valve
- 4. Smooth left valve
- 5. Low convexity

Of these, *P. (P.) laeviradiatum* exhibits only feature 5. The ornamentation of the right and left valves is exactly opposite to that of the paradigm. The fairly small adult size and thin shell is much closer to a paradigm for reclining on soft sediment in a low energy environment. Since there is abundant evidence (see Section 8) to show that *P. (P.) laeviradiatum* in fact occupied high energy environments it can be said that the species was poorly adapted to such situations. However, features which are inadaptive (small size, thin shell, reduced ornamentation) or of neutral significance (ontogenetic increase in UA) for reclining become adaptive for swimming. It seems probable therefore that *P. (P.) laeviradiatum* was able to recover from periodic overturning by means of the swimming response.

32

The small initial size and subsequent negative allometric growth of the byssal notch indicates only a brief byssate phase early in ontogeny. However, additional stability for the shell when adult may have been provided by burial of the elongate auricles just beneath the sediment surface, as suggested in Section 8. Most studied examples of slender, linear projections from the bulk of a shell (e.g. the alae of Mucrospirifer [RUD-WICK, 1970]) have been interpreted in terms of a 'snowshoe' adaptation to life on a soft substrate. From the evidence already adduced from ecology this cannot be the case for *P*. (*P*.) laeviradiatum. A more effective mode of stabilisation such as the spines of Ps. (Ec.) barbatus was probably precluded by the presence of a prismatic outer shell layer in the right valve (herein presumed to exist by analogy with other asymetrically ornamented members of the Propeamussiidae). WALLER (1972a) has demonstrated the difficulty of forming sharply projecting ornament based on a prismatic microstructure. This also explains the absence of plicae in P. (P.) laeviradiatum. The internal costae of the species are almost certainly a functional substitute (see Part II).

STAESCHE (1926) speculated that the dorsally prolonged auricles acted like the keel of a boat and provided stability during swimming. To have been effective this would have required the animal to swim with the plane of commissure vertical. Since no extant pectinid is known to adopt this orientation STAESCHF's hypothesis must be classed as doubtful.

10. ORIGINS AND EVOLUTION

Of known species the only likely ancestor for P. (P.) *laeviradiatum* is P. (P.) *pumilum*. The lower density of external costae could be the result of heterochronic retardation (caused by changes in the regulatory genome) of the rate of costal intercalation in the latter species. The extended auricles of P. (P.) *laeviradiatum* cannot be the result of heterochronic alteration of the ontogeny of P. (P.) *pumilum* since the growth of the auricles in the latter species seems to be isometric. The development of extended auricles may therefore signify structural genome evolution. The smaller number of internal costae could represent nothing more than selection for the lower end of the range (9–13) in P. (P.) *pumilum*.

If *P.* (*P.*) laeviradiatum did indeed evolve from *P.* (*P.*) punilum we witness the evolution of a strongly 'K' selected (stenotopic, equilibrium, moderate-sized) from a strongly 'r' selected (eurytopic, opportunistic, usually small-sized) species.

There is no evidence for any phyletic trends in morphology within *P. (P.) laeviradiatum* apart from a reduction in maximum height from the lowermost Aalenian (H_{max} : 30) to the L. Bajocian (H_{max} : 22.5).

If *P. (P.) laeviradiatum* became extinct after the Laeviuscula zone (see Section 5) no explanation can be put forward for its demise in terms of a loss of the appropriate sedimentary facies. Apparently suitable condensed deposits occur widely in the U. Bajocian of Europe.

Propeamussium (Propeamussium) nonarium (QUENSTEDT 1858)

Pl. 1, Figs. 13, 14, ? Figs. 15, 16; text fig. 18

Synonymy

- v⁺? 1855 Pecten lorierianus sp. nov; COTTEAU, p. 113. 1858 Pecten nonarius sp. nov; QUENSTEDT, p. 795,
- pl. 98, fig. 4. ? 1871 Pecten penninicus sp. nov; NFUMAYR, p. 375,
- pl. 21, fig. 4.
 ? 1874 Pecten poecilographus sp. nov; GEMMELLARO and DI BLASI, p. 130, pl. 4, figs. 13–16.
- pv non 1883 Pecten poecilographus GEMMELLARO and DI BLASI; BOEHM, p. 600, pl. 67, figs. 5, 6.
 - ? 1893 Pecten (Amusium) Sokolowi sp. nov; RETOWSKI, p. 284, pl. 14, figs. 24–26.
 - ? 1893 Pecten (Amusuan) Pawlowi sp. nov; RETOWSKI, p. 285, pl. 14, figs. 27a, 27b.
 - 1897 Pecten Spendiarowi sp. nov; ABEL, p. 352, text figs. 1a, 1b.
 - 1905 Pecten Spendiarowi ABEL; VFTTFRS, p. 250.
 - pv? 1905 *Pecten lonertanus* COTTEAU; PERON, p. 234, pl. 10, figs. 8, 9.
 - non 1917 Pecten Sokolowi sp. nov; BORISSIAK and IVANOFF, p. 46, pl. 2, figs. 10, 10a.
 - v 1926 Variamussium nonarium (QUENSTEDT); STAESCHF, p. 88, pl. 3, ligs. 9, 10.
 - ? 1926 Variamussium quinquenarium sp. nov; BERCK-HEMER in STAESCHE, p. 89, pl. 3, figs. 5, 6.
 - 1964 Variamussium nonarium (QUENSTEDT); WELLN-HOFER, p. 37, pl. 2, figs. 4–7.
 - 1974 Propeanussium (Propeanussium) nonarium (QUENSTEDT); NITZOPOULOS, p. 46.
 - ? 1978 Parvamussium aff. personatum (GOLDFUSS); HOLDFR, p. 20, pl. 5, figs. 1–4, text fig. 11.

No trace of the type material of *Pecten nonarius* QUENSTEDT 1858, p. 795, pl. 98, fig. 4 has yet been found in the QUENSTEDT Collection (GPIT). The figured specimen was derived from the Malm ζ (L./M. Tithonian) of Söslingen (Swabia).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Nur den kleinen *Pecten nonarius* tab. 98, fig. 4 möchte ich besonders hervorheben, wie *undenarius* pag. 321 und Consorten zeigen die Steinkerne neun innere sehr dicke Hauptrippen. Bei großen, wie unsere Figur, stellt sich an Rande noch eine kurze Zwischenrippe ein. Im uebrigen läßt sich nicht viel wahrnehmen, man sieht nur, daß die Schale Ohren und feine Streifen hatte. Söslingen, Mähringen.'

2. AMENDED DIAGNOSIS

Distinguished from all other Jurassic species of P. (*Propeamussium*) by the intercalation of additional internal costae and by the termination of the internal costae somewhat farther from the ventral margin (at approx. 5/6 H).

3. AMENDED DESCRIPTION

Essentially similar to *P. (P.) pumilum;* differing by the smaller size (H rarely more than 8 mm) and by the ornament. Interior of valves ornamented with between 7 and 9 original radial costae, supplemented by intercalary costae at larger

sizes but in neither case reaching the ventral margin (Pl. 1, Fig. 14). Exterior of left valve ornamented by more numerous original and intercalary costae, reaching the ventral margin and crossed by comarginal striae to form a reticulate pattern (Pl. 1, Fig. 13). Right valve exterior ornamented with comarginal striae.

4. DISCUSSION

Pecten' lorierianus COTTEAU may constitute the first name applied to the species described in Section 3. However, while the syntypes (MNS B. 03985; Pl. 1, Figs. 15, 16) apparently reveal traces of internal costae, of which some seem to be intercalary, there are only 5 or 6 original internal costae and some of the costae appear to reach the ventral margin. It seems unwise therefore to adopt *'P.' lorierianus* as the senior synonym. The next available name is *'P.' nonarius* QUENS-TEDT. Although the type material has not yet been found the original description and figure leave no doubt as to its identity.

ABEL'S (1897) incomplete description of 'P.' Spendiarowi mentions intercalary internal costae but also specifies external costae on the right valve, unlike P. (P.) nonarium. VETTERS (1905) re-examined ABEL'S topotype material and showed the original description and figures to be composites built up from a number of poorly preserved specimens. Unfortunately, he did little to clarify the nature of the ornament on the right valve exterior. However, in other respects the revised description matches that of P. (P.) nonarium and it may well be that the uncertainty over the right valve exterior ornament is due to preservation of ABEL'S and VETTER'S material as composite moulds, a common occurrence in thin shelled species.

One of the figures of 'P.' penninicus NEUMAYR from the Oxfordian has the characteristic reticulate exterior ornament of P. (P.) nonarium, described by STAESCHE (1926). NEUMAYR referred this to the right valve in his diagnosis and considered that the other figure, characterised solely by comarginal ornament, represented the left valve. HOLDER (1978) has re-examined NEUMAYR's types in Vienna and suggested that both may in fact be left valves which have been subjected to differing amounts of abrasion. There is thus no reason to exclude 'P.' penninicus from P. (P.) nonarium on the basis of the external ornament. Unfortunately the types are not large enough to exhibit the diagnostic intercalary internal costae so the possibility cannot be entirely excluded that they are very late representatives of the externally similar species P. (P.) pumilum; they apparently possess 11 original internal costae as is common in the latter. HOLDER has figured a similar specimen from the same horizon under Parvamussium aff. personatum (GOLDFUSS), a junior synonym of P. (P.) pumilum.

'P.' poecilographus GEMMELLARO and DI BLASI may be a large form of P. (P.) nonarium (H: 44). The figured specimens are apparently steinkerns showing 10–12 original internal costae, with additional costae intercalated near the ventral margin. However, the disparity in size of the auricles (AH: 11, PH: 5.5 at H: 44) probably serves to distinguish the species. The internal ornament recognisable on specimens referred to 'P.' poecilographus by BOEHM (1883) is too faint for them to be regarded as conspecific with P. (P.) nonarium.

Variamussium' quinquenarium BERCKHEMER is only known from two poorly preserved steinkerns (H_{max} : 28.6) showing 5–6 original internal costae with 2–3 intercalary costae between each pair. Their overall shape is similar to *P*. (*P*.) *nonarium* and they may therefore merely be large forms of this species.

'P.' ('Amusium') Pawlowi RETOWSKI is only known from one imperfect specimen. The figure of this reveals 22 internal costae of which about 10 seem to be of intercalary origin. It is therefore very similar to P. (P.) nonarium. 'P.' ('Amusium') Sokolowi RETOWSKI was described as possessing 13–15 internal costal of which none were said to be intercalary. However, one of the original figures (pl. 14, fig. 26) is of a specimen with only 11 internal costae thus the species must be at least close to P. (P.) nonarium. 'P.' Sokolowi BORISSIAK and IVANOFF (erected for a specimen referable to Radulopecten fibrosus) is a junior primary homonym of 'P.' ('Am.') Sokolowi RETOWSKI and must therefore be rejected.

5. STRATIGRAPHIC RANGE

P. (P.) nonarium is first recorded in the (?U) Oxfordian of S. Germany (STAESCHE, 1926; NITZOPOULOS, 1974; ?HOLDER, 1978) and ?S. Poland (NEUMAYR, 1871). STAESCHE also records the species in the Kimmeridgian of S. Germany and there are questionable records from the E. Paris Basin (see Section 7). Tithonian records are widespread and refer to numerous specimens although there are no certain records from the U. Tithonian. '*Parvanussium' binagense* TAMURA (1973) described from Japan and Indonesia may represent the persistence of *P. (P.) nonarium* into the L. Cretaceous.

6. GEOGRAPHIC RANGE

P. (P.) nonarium is unknown outside the European region, except possibly in the L. Cretaceous (see Section 5). Within Europe (text. fig. 18) all records are limited to a narrow zone corresponding to a palaeolatitude of about 25°N. Occurrences outside this zone are of questionable identity (see Section 4).

7. DESCRIPTION OF ECOLOGY

Undoubted records of *P*. (*P*.) nonarium are limited to micritic or marly limestones containing a benthic fauna which is usually low in diversity and density. The only exceptions to this rule are specimens from reef-derived faunas in the Tithonian of Sicily which have been referred to '*Pecten*' poecilographus GEMMFI LARO and DI BLASI. This can be construed as further evidence for the view that the latter is not conspecific with *P*. (*P*.) nonarium (see Section 4).

In marly limestones of the L. Tithonian klippes north of Vienna *P. (P.) nonarium* occurs commonly in an otherwise sparse fauna dominated by anmonites but also containing a few terebratulid brachiopods and bivalves of the genera *Astarte, 'Aucella', Corbis, Nucula, 'Ostrea'* and *Trigonia* (ABEL, 1897; VFTTERS, 1905). Micritic limestones of the same age in S. Germany (Hangende Bankkalke) contain common *P. (P.) nonarium* associated with a similar low diversity benthos. In the M. Tithonian of the same area, the Neuburger

Text fig. 18: Propeamussium (P.) nonarium - European distribution.

Bankkalke, a micritic limestone, contains common *P*. (*P*.) *nonarium* in association with ammonites and small specimens of *Entolium* (WELLNHOFFR, 1964).

Abundant but poorly preserved specimens exhibiting fine radial striae from the Calcaire à Astartes (L. Kimmeridgian) of the E. Paris Basin (MNR) are probably mainly referable to *Radulopecten strictus* (q. v.) but may also include a few examples of *P. (P.) nonaruum*. Specimens with the diagnostic intercalary internal costae have, however, yet to be discovered.

8. INTERPRETATION OF ECOLOGY

The fine-grained sediments to which P. (P.) nonarium is limited are indicative of very low environmental energy. The sparseness of benthic fauna in such sediments suggests that they formed an unfavourable soupy substrate. Entolium, the only common epibenthic element apart from P. (P.) nonarium, probably escaped sinking into the substrate by virtue of the snowshoe effect provided by the small, thin, discoidal shell and by its probably considerable ability to swim. Non-vagile byssate and cemented bivalves were probably also restricted by the paucity of firm attachment sites. It is worth noting that the specimens of 'Ostrea' are always found cemented to ammonites (VETTERS, 1905).

P. (P.) nonarium may have been limited to low energy environments on account of its thin and probably weak shell. However, the very restricted geographic distribution of the species cannot be explained simply on this basis. Apparently suitable fine-grained substrates in, for instance, the U. Jurassic of S. Europe, went uncolonised. Bearing in mind the very narrow latitudinal range of *P. (P.) nonarium* it is possible that the species had a very precise temperature dependence.

9. FUNCTIONAL MORPHOLOGY

Small size, low convexity, discoidal form and thin shell place *P*. (*P*.) nonarium close to a paradigm for reclining on

soft substrates in a low energy environment. The small byssal notch indicates only a brief byssate phase in the juvenile. The absence of information on the ontogeny of umbonal angle precludes any assessment of swimming ability although the above features are certainly not inadaptive for swimming. Internal costation probably provided strength and stiffness for the thin shell in defence against predatory attacks. Intercalation of new costae would have maintained this function against the detrimental effects of increased size and so represents a superior adaptation in comparison to the simple pattern of costae exhibited by other Jurassic species of *Propeamussium*.

10. ORIGINS AND EVOLUTION

By its general morphological similarity the most likely ancestor for *P*. (*P*.) nonarium is *P*. (*P*.) pumilum. However, there is an unexplained stratigraphic gap in the Callovian between respectively, the first and last appearances of thesespecies.

At comparable sizes P. (P.) nonarium appears to have relatively fewer costae on the exterior of the left valve than P. (P.) pumilum. Since the costae are continuously intercalated during the ontogeny of both species, trans-specific evolution may have involved the heterochronic retardation of the rate of intercalation with respect to size. In contrast, the presence of internal intercalary costae in P. (P.) nonarium represents the evolution of a new feature and implies some more profound revolution in the genome. It represents, moreover, an improvement in mechanical design (see Section 9) and this, together with a narrowing in the range of substrate tolerance and retardation of 'shape' development, is strong evidence for the prevalence of 'K' selection (GOULD, 1977).

From the limited available data it is impossible to detect any phyletic trends within *P. (P.) nonarium*.

Family PECTINIDAE RAFINESQUE 1815 Genus ENTOLIUM MEEK 1865

Type species. OD; MFEK 1865 p. 478; *Pecten demissus* PHILLIPS, "as illustrated by QUENSTEDT, 1858, p. 353, pl. 48, fig. 7", i. e. *Entolium demissum* MEEK 1865 (see DUFF, 1978); Aalenian, Germany.

AMENDED DIAGNOSIS

Byssal notch usually absent at all stages of development; margins closed laterally; incised ligamental area usually present and extending parallel to hinge line on each side of inner ligament pit; auricular crura present; outer shell layer partly 'fibrous', 'fibres' radial or divaricate. M. Tr.-U. Cret., cosmop.

DISCUSSION

HERTLEIN (1969: N346) considered a byssal notch to be lacking in Entolium. There is, however, a small but quite clearly developed notch in juveniles of Entolium (E.) lunare (see p. 38). By his statement 'inner shell layer calcite, foliate; outer layer radially fibrous' HERTLEIN implies in his diagnosis the existence of only 2 shell layers in Entolium. However, in almost all known scallops, including the morphologically very similar Amusium (TAYLOR et al., 1969), there is a third non-myostracal shell layer, composed of aragonite. In all but the aberrant Propeamussiidae (see p. 22) this forms the middle shell layer and a similar layer can de inferred in Entolium (see p. 36). The inner and outer shell layers of Recent pectinids (sensu stricto) appear to be invariably composed of foliated calcite (TAYLOR et al., 1969). However, HERTLEIN's contention that Mesozoic Entolium has a fibrous outer layer is given support by the author's study of valve surfaces at low magnification (text fig. 27) although it would appear from specimens in various states of abrasion that only one sub-layer within the outer shell layer is composed of fibres. Indeed it is conceivable that the fibrous appearance could be due to the assumption of a vertical orientation by foliae. SEM study of fractured surfaces has not proved definitive on this point but henceforth in this work shell structures such as that depicted in text fig. 27 are termed fibrous in order to distinguish them from the more usual foliated structure consisting of sub-horizontal foliae. The mineralogy of the outer shell layer in Entolium is unclear from HERTLEIN's statement but the preservation state of specimens examined by the author suggests very strongly that it is calcitic, as is usual in the pectinids (see above).

HERTLEIN'S statement that the fibres are radial must be amended on the basis of results presented herein so as to include divaricate arrangements. Such arrangements are also found in L. Jurassic *Camptonectes* (*C.*) *subulatus* (q. v.) thus forms of the latter with shallow byssal notches closely resemble contemporaneous *Entolium* (see p. 38). They may, however, be distinguished in well preserved specimens by the presence of divaricate *striae* on the shell surface (as against divaricate *fibres* within the shell of *Entolium*), by the absence of dorsally extended auricles on the right valve, by the perpendicular junction of the anterior auricle with the hinge line on the left valve and by the marked auricular asymmetry in both valves.

Subgenus ENTOLIUM s. s.

(Synonyms etc.	Protamusium VERRILL 1897
	Protamussium PARIS and RICHARDSON 1916
	[nom. null.]
	Protomusium STEWART 1930 [nom. null.]
	Entholium TZANKOV and BONCEV 1932
	[nom. null.]
	Etolium McLEARN 1949 [nom. null.])

AMENDED DIAGNOSIS

Auricles of right valve projecting above hinge, commonly as angular wings; left valve smooth, right valve smooth or with comarginal grooves. M. Trias. – U. Cret., cosmop.

DISCUSSION

HERTLEIN (1969: N347) considered the valve bearing dorsally extended auricles in *E. (Entolium)* to be the left. However, the fact that in *E. (E.) lunare* (see p. 38) a byssal notch is found in the valve bearing dorsally extended auricles indicates, by analogy with all other known pectinids, that this valve is the right. HERTLEIN thought that the outer surface of the valves was always smooth in *E. (Entolium)*. The right valve of *E. (E.) orbiculare* (see p. 57) exhibits, however, quite strong comarginal grooves.

STAESCHE (1926) attempted to subdivide the bulk of Jurassic E. (Entolium) by the criterion of the presence or absence of internal ridges extending from the umbonal region in a direction sub-parallel to the dorsal margins. Forms with such ridges were said to posses umbonal angles of about 95° and were referred to the 'Gruppe des Entolium cingulatum' while forms without internal ridges were said to possess larger umbonal angles and were referred to the 'Gruppe des Entolium demissum'. Many subsequent authors have adopted STAESCHE's criteria yet they almost certainly represent a spurious basis for the subdivision of the majority of Jurassic E. (Entolium). STAESCHF himself figured (pl. 4, fig. 5) a specimen of the exemplary species of his second group which shows, through the translucent shell, the internal ridges diagnostic of his first group. Moreover, the sole known type of this species (YM 202) has an umbonal angle of barely 80°. In fact umbonal angle increases through the ontogeny of virtually all Jurassic E. (Entolium) from a value below 95° to a value well above it, thus a single value cannot be diagnostic of any subdivision of the group. Furthermore internal ridges may be found in large specimens with correspondingly large umbonal angles as well as in small specimens with umbonal angles of about 95°. The author considers that in most cases the development of internal ridges, far from being under genetic control, is a result of diagenetic processes.

As STAESCHE pointed out, the internal ridges correspond in position to the margins of the relatively thick inner shell layer (composed of foliated calcite). In all known true pectinids (see above) this layer is surrounded in the internal surface by the outcrop of the middle shell layer and pallial myostracum, both of which are thin and composed of relatively soluble aragonite. In very many of those specimens of *E. (Entolium)* exhibiting internal ridges the upstanding feature appears to be nothing more than the edge of the inner shell layer, exaggerated by the loss of the immediately adjacent shell material. This is most plausibly explained as the result of the preferential dissolution of aragonite during diagenesis. Such a process could also account for the fact that in some specimens the external surface of the shell displays ridges above the edges of the inner shell laver (Pl. 1, Fig. 17). Although dissolution of aragonite would result in thinning of the shell in all but the most marginal regions (whose thickness is entirely due to the outer shell layer which is almost certainly composed of calcite, see p. 35) the proportionate effect on thickness would be greatest in the region immediately marginal to the inner shell layer where the middle shell layer and pallial myostracum constitute a relatively large part of the total thickness. Thus, in shells affected by diagenetic loss of aragonite, one might expect this region to be the locus of most compressive deformation due to sediment compaction with the resultant development of a ridge above the edges of the inner shell layer in a manner analogous to the genesis of a fault scarp.

In the case of certain specimens (BSPHG 1957 Vf 1291-1293, 1824-1855) referred by WELLNHOFER (1964) to *Entolium cingulatum* (GOLDEUSS) it does appear that internal ridges were present when the animal was alive. The grooves seen on internal moulds (cf. Pl. 1, Fig. 21) seem too sharply defined to have resulted from any diagenetic process of the sort outlined above. The author prefers at present to reserve judgement on the status of these specimens pending examination of further material (see also p. 52).

For the remainder of Jurassic E. (Entolium), to which STAESCHE's scheme seems inapplicable, the only criteria by which a reasonable subdivision can be made are the presence or absence of a byssal notch and the presence or absence of strong comarginal grooves on the right valve. The first distinguishes between E. (E.) lunarc and E. (E.) corneolum and the second between *E*. (*E*.) orbiculare and both the latter species. E. (E.) orbiculare and E. (E.) corneolum undoubtedley overlap in their stratigraphic ranges (see pp. 58, 52) and there is a strong suggestion that the latter species overlaps with E. (E.) lunare (see pp. 43, 52). There is thus no evidence that the species form part of a phyletic continuum. KFLLY (1977) states that E. (E.) orbiculare may sometimes lack comarginal grooves on the right valve but that samples of E. (Entolium) can be assigned unequivocally to E. (E.) orbiculare if a few comarginally grooved right valves are present. This argument ignores the quite reasonable possibility that E. (E.) orbiculare may occur sympatrically with other E. (Entolium) species. Thus in the absence of any other diagnostic features in E. (E.) orbiculare the author can see no justification for not placing smooth right valves occurring together with comarginally grooved right valves in E. (E.) corneolum if (like all undoubted examples of E. (E.) orbiculare examined by the author) they lack a byssal notch or in E. (E.) lunare if (as KELLY states without pictorial evidence, may sometimes be the case in E. (E.) orbiculare) they possess a byssal notch. There is a pressing need for detailed study of undoubted (comarginally grooved) right valves of E. (E.) orbiculare in order to isolate further diagnostic features which could be used to crosscheck KELLy's statements concerning the range of variation in the right valve.

At present there appears to be no completely sound basis for distinguishing the left valves of any of the three species discussed above. However, slight differences in mean metric proportions (see pp. 38, 47, 57) and the relatively limited overlap of the known stratigraphic ranges of the species (see pp. 43, 52, 58) do allow a reasonably confident identification of some specimens.

A further species which may be referable to *E. (Entolium)*, characterised by a slight byssal notch and very high HAA_R/L (see p. 43), appears to be quite common in the Tithonian of S. Europe. However like a number of other distinctive species from the latter stage and region (see p. 11) it is excluded from this work because of the paucity of museum specimens and bibliographic references and because its origins probably lie outside the pectinid fauna of the European Jurassic.

There is some evidence from the literature (see p. 58) for yet another *E. (Entolium)* species, characterised by strong comarginal ornament on both valves, in the M. Jurassic of Europe. However, the author has failed to discover any specimens which confirm the existence of this species.

The somewhat reduced mean H/UA of specimens with smooth, unnotched right valves from M. Tithonian sands near Oxford is not considered herein to merit a specific separation from E. (E.) corneolum since other metric proportions are inseparable from the latter species and a number of more parsimonious explanations, of which reduced growth rate is the most plausible (see p. 55), are available.

Entolium (Entolium) lunare (ROFMFR 1839) Pl. 1, Figs. 17, 18, ? Fig. 23; text figs. 19–29.

Synonymy

?	1829	Pecten sp.; PHILLIPS, pl. 5, fig. 11.
?	1833	Pecten glaber sp. nov; HEHL in v. ZIETEN, p. 69,
		pl. 53, fig. 1 (non MONTAGU sp.).
	1836	Pecten corneus J. SOWERBY, GOLDFUSS, p. 73,
		pl. 98, fig. 11 (non J. SOWERBY sp.).
	1839	Pecten lunaris sp. nov; ROEMER, p. 26.
	1843	Pecten hasinus sp. nov; NYST, p. 299.
	1850	Pecten Hehlii sp. nov; D'ORBIGNY, v. 1, p. 219.
V	±850	Pecten disciformis SCHUBLER; D'ORBIGNY, v. 1,
		p. 237 (non Schubler sp.)
	1850	Pecten Philenor sp. nov; D'ORBIGNY, v. 1, p. 238.
1	1850	Pecten Palaemon sp. nov; D'ORBIGNY, v. 1,
		- 270 (P.NUTE 1000 - 3 m 27 ml 18 fig 5

- p. 238, (BOULF, 1908, v. 3, p. 37, pl. 18, fig. 5, non fig. 6).
- v? 1850 Pecten Proeteus sp. nov; D'ORBIGNY, v. 1, p. 257.
- (?) 1852 Pecten glaber HEHL; QUENSTEDT, p. 506 (non MONTAGU sp.).
 - 1853 *Pecten glaber* ð var. nov; OPPEL, p. 77 (non MONTAGU sp.).
- ? 1858 Pecten amatus sp. nov; ANDLER, p. 644.
- (?) 1858 *Pecten glaber* HEHL; QUENSTEDT, p. 79 (non MONTAGU sp.).
 - ? 1858 Pecten sepultus sp. nov; QUENSTEDT, p. 48, pl. 4, figs. 10, 11.
 - 1858 Pecten Hehli D'ORBIGNY; OPPFL, p. 103.
- (?) 1858 Pecten Philenor D'ORBIGNY; OPPEL, p. 181.
- (?) 1861 Pecten sepultus QUENSTEDT; TRAUTSCHOLD, p. 446.
 - 1863 Pecten hasinus NYST; SCHLÖNBACH, p. 545.
 - 1864 Pecten Hehli D'ORBIGNY; DUMORTIER, p. 162, pl. 24, fig. 16.
 - ? 1866 Pecten demissus PHILLIPS; LINDSTROM, p. 14, pl. 3, figs. 9, 10 (non PHILLIPS sp.).

- 1867 *Pecten Hebli* D'ORBIGNY; DUMORTIFR, p. 70, pl. 12, figs. 5, 6.
- 1868 Pecten liasinus NYST; JAUBERT, p. 234.
- ? 1869 Pecten frontalis sp. nov; DUMORTIFR, p. 229, pl. 37, figs. 1, 2, pl. 38, fig. 1.
- 1869 Pecten Palaemon D'ORBIGNY; DUMORTIER, p. 304.
- 1869 Pecten liasinus NYST; DUMORTIER, p. 306.
- 1871 Pecten lunaris ROEMER; BRAUNS, p. 398.
- 1872 Pecten liasinus NYST; TIETZE, p. 106.
- ? 1875 Pecten demussaries sp. nov; CROSS, p. 123.
- 1876 Pecten lunularis ROEMER; TATE and BLAKE, p. 361.
- v 1878 Camptonectes liasicus (NYST); BAYLE, pl. 121, fig. 2.
- ? 1883 Pecten demissus PHILLIPS; LUNDGREN, p. 16, pl. 2, fig. 12 (non PHILLIPS sp.).
- 1884 Pecten lunularis ROEMER; SIMPSON, p. 172.
- 1886 *Pecten Heblu* D'ORBIGNY; DI STEFANO, p. 135, pl. 4, figs. 28–30.
- ? 1886 Pecten Di-Blasii sp. nov; DI STEFANO, p. 157, pl. 4, figs. 28, 29.
- ? 1888 Pecten lundgreni sp. nov; MOBERG, p. 35, pl. 1, figs. 27–32.
- 1891 Pecten Hehh D'ORBIGNY; BEHRENDSEN, p. 392.
- ? 1891 Pecten Di Blasii Di Stefano; Di Stefano, p. 61.
- 1892 Pecten (Pseudamusium) Hehlii D'Orbigny; PARONA, p. 15.
- (?) 1892 Pecten (Pseudamusium) frontalis DUMORTIER; PARONA, p. 16.
 - 1894 Pecten Hehli D'ORBIGNY; MORICKF, p. 37.
- ? 1895 Pecten Stewartianus sp. nov; LUNDGREN, p. 198, pl. 3, fig. 12.
- ? 1895 Pecten callosus sp. nov; LUNDGREN, p. 200, pl. 3, fig. 15.
- 1897 Pecten hasmus NYST; POMPECKJ, pp. 773, 790, 820.
 1903 Pecten (Entolium) Hebli D'ORBIGNY; BISTRAM,
- p. 38. ? 1904 Chlamys (Pseudamussium) Chartroni sp. nov;
- Cossmann, p. 504, pl. 16, figs. 11, 12.
- 1909 Pecten (Entolium) Hebli D'ORBIGNY; TRAUTH, p. 88.
- 1909 Pecten (Entolium) liasinus NYST; TRAUTH, p. 89.
- 1912 Pecten Hehli D'ORBIGNY; TONI, p. 33.
- 1915 Pecten (Entolium) Frauponti sp. nov; ROLLIER, p. 467, pl. 30, fig. 7.
- non 1916 *Chlamys (Pseudamussium) palaemon* (D'ORB-IGNY); COSSMANN, p. 46, pl. 5, figs. 18-20.
 - 1916 Entolium disciforme (SCHUBLER); COSSMANN, p. 45, pl. 8, figs. 10, 11 (non SCHUBLER sp.).
 - ? 1916 Pecten glaphyrus sp. nov; R. PHILIPPI in JAWORSKI, p. 437.
 - ? 1917 Pecten vitreus ROEMER; BORISSIAK and IVANOFF, p. 8, pl. 1, fig. 4, (non figs. 1, 2, 12, 16).
 - 1925 Pecten (Entolium) Hebli D'ORBIGNY; DUBAR, pp. 260, 266.
 - 1925 Pecten liasinus NYST; DUBAR, p. 266.
- (?) 1925 Pecten frontalis DUMORTIER; DUBAR, p. 266.
- (?) 1925 Pecten (Pseudamussium) Palaemon D'ORBIGNY; DUBAR, p. 266.
- v 1926 Chlamys calva (GOLDFUSS); STAESCHE, p. 58, pl. 2, figs. 11, 12, (non GOLDFUSS sp.).
- v 1926 Entolium Hehlii (D'ORBIGNY); STAESCHF, p. 59, pl. 2, figs. 13–15.
- v 1926 Chlamys Philenor (D'ORBIGNY); STAESCHE, p. 62, pl. 1, figs. 16, 17.
- v? 1926 Entolium Proeteus (D'ORBIGNY); STAESCHE, p. 92, pl. 6, figs. 3, 4.
- v 1926 Entolium lunare (ROEMER); STAESCHE, p. 96, pl. 4, figs. 1, 2.
- v 1926 Entolium liasinum (NYST); STAESCHE, p. 97, pl. 6, fig. 5.

- (?) 1926 Entolium frontalis (DUMORTIFR); ROMAN, p. 113.
 (?) 1929 Pecten (Amussium) Palaemon D'ORBIGNY; LAN-
 - QUINE, pp. 132, 189. 1929 Pecten (Entolium) Heble D'ORBIGNY; LANQUINE, p. 132.
 - 1932 *Pecten (Entbolium) hasinum* NYST; TZANKOV and BONCEV, p. 230.
- (?) 1934 Entolium frontale (DUMORTIFR); ROSENKRANTZ, p. 113.
- v 1936 Entolium Heblin (D'ORBIGNY); DECHASEAUX, p. 60, pl. 8, figs. 10, 11.
- (?) 1936 *Entolium frontalis* (DUMORTIER); DECHASEAUX, p. 62.
 - 1936 Entolium Fratponti (ROLLIER); DECHASEAUX, p. 62.
- v? 1936 Chlamys philenor (D'ORBIGNY); KUHN, p. 247, pl. 12, fig. 29.
- (?) 1942 *Pseudentolium frontale* (DUMORTIER); ROSEN-KRANTZ, p. 25.
 - 1942 Pecten (Entolum) cf. Hehli D'ORBIGNY; LEANZA, p. 175, pl. 9, fig. 4.
 - 1951 Entolium hehli D'ORBIGNY; TROEDSSON, p. 216.
 1951 Entolium calvum (GOLDFUSS); TROEDSSON,
 - p. 217, pl. 20, figs. 9–13 (non GOLDFUSS sp.). 1951 Entolium lundgreni (MOBFRG); TROEDSSON,
 - p. 218, pl. 20, figs. 4-8.
- 1961 Entolium cf. lunare (ROFMER); HAYAMI, p. 255. 1963 Entolum lunare (ROFMER); HALLAM, p. 561.
- 1963 Entolum lunare (ROEMER); HAILAM, p. 561.
 (?) 1965 Pecten frontalis DUMORTIER; DAHM, pp. 27, 28.
- 1966 Entolum proteus (D'ORBIGNY); BEHMEL and GEYER, p. 28.
 - 1966 Entolum lunare (ROEMER); URLICHS, p. 31.
 - 1966a Entohum hasmum (NYST); C. PAI MFR, p. 67.
- 1966b Entolum liasinum (NYST); C. PAIMFR, p. 72.
- 1967 Entolum liasinum (NYST); BERRIDGE and IVIMEY COOK, p. 160.
- 1971 Entolum liasanum (NYST); HALLAM, pp. 244, 245.
- ? 1971 Entolum procteus (D'ORBIGNY); WENDT, p. 156.
 1973 Entolium (Entolium) Hebli (D'ORBIGNY); LIN-TINI, p. 23, pl. 14, fig. 7.
- ? 1978 Entolium sp. A; DUFF, p. 64, pl. 5, figs. 7-10, 12, 13, 17.

The type material (possibly only one specimen) of *Pecten lunaris* ROEMER 1839, p. 26 is probably in the ROEMER-PELIZAEUS-Museum, Hildesheim, W. Germany. ROEMER cites the following dimensions: 'Diameter': 3.5 inches (88 mm), UA: 150. The material was collected near Ocker (N. Germany'), according to BRAUNS (1871) from sediments of the Planorbis zone.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

P. (Pleuronectes) testa plana orbiculari concentrice substriata, angulo marginum cardinalium obtusissimo.

Es gehört diese Form zu den Pleuronectiden. Die Schalen sind sehr flach gewölbt, zirkelrund, nur undeutlich concentrisch gestreift und ziemlich dick. Die Schloßkantenwinkel beträgt etwa 150 Grad.

Findet sich im unteren Lias des Adenberges bei Ocker und hat einen Durchmesser von $3^{1}/_{2}$ Zoll.'

2. AMENDED DIAGNOSIS

Distinguished from E. (E.) corneolum by the presence of a small byssal notch in the juvenile and from E. (E.) orbiculare by the smooth right valve.

Text fig. 20: Entohum (E.) lumare - separation of auricular apices/length.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long early in ontogeny, becoming longer than high (text fig. 19). Maximum height probably 116 mm (BM 46444) but possibly as much as 145 mm (see Section 4). Umbonal angle relatively invariant at any one size but increasing at a decreasing rate during ontogeny (text fig. 21) to give concave dorsal margins. Equilateral, approximately equivalve, low convexity.

Intersinal distance slightly greater in left valve than right, increasing at a decreasing rate in both (text figs. 22, 23). Small juvenile byssal notch becoming almost non-existent later in ontogeny (Pl. 1, Fig. 18).

Disc flanks low but auricles well demarcated from disc. On left valve both auricles meeting hinge at an obtuse angle and

Text fig. 22: Entolium (E.) lunare - intersinal distance on left valve/length.

39

disc at an acute angle. On right valve both auricles extended dorsally beyond hinge line, posterior meeting disc at an acute angle, anterior meeting disc at an approximate right angle. Height of right valve anterior auricle (text fig. 24) and separation of auricular apices (text fig. 20) variable and increasing at a decreasing rate in both. Anterior hinge length slightly greater than posterior, increasing at a decreasing rate in both (text figs. 25, 26).

Valve exteriors ornamented only with very fine comarginal striae. Shell thin with at least one sub-layer in the outer shell layer composed of divaricate fibres (text fig. 27; see p. 35).

4. DISCUSSION

Possibly the earliest bibliographic record of the species described in Section 3 is as 'Pecten' sp. PHILLIPS (1). The stratigraphic horizon of the figured specimen is unusually late (Oxfordian) but the presence of a byssal notch aligns it with the species described above (however, see below). The original is now lost, as is that of 'P.' glaber HEHL whose figure also resembles that of the species described in Section 3. In erecting 'P.' Heblii for HEHL's figured specimen, D'ORBIGNY (1850) considered that 'P.' glaber was a junior primary homonym of a species described by MONTAGU in 1803. His hypodigm is far from clear but subsequent authors (see Synonymy) have applied the name to the species described in Section 3. The present author has been unable to trace MONTAGU's description but even assuming that D'ORBIGNY was justified in rejecting HEHL's species, the creation of a new species was an unnecessarv step since both 'P.' lunaris ROEMER and 'P.' liasinus NYST appear to represent the species described in Section 3, and have historical precedence. 'P.' liasinus was created in

1843 for GOLDFUSS' (1836) specimen from the L. Jurassic referred to 'P.' corneus J. SOWERBY, a Tertiary species. 'P.' lunaris was erected in 1839 for a specimen which, according to BRAUNS (1871), was derived from the Planorbis zone. The specimen has not been examined by the present author. However, ROFMER specifies an umbonal angle of 150° which is a reasonable value for the species described in Section 3 at the size stated ('diameter': 87 mm) and well above that attained in any other Jurassic E. (Entohum) species. Together with the stratigraphic information this can leave little doubt that 'P.' lunaris should be accorded the status of senior synonym.

One of the syntypes of 'P.' Palaemon D'ORBIGNY (MNS 1840) closely resembles E. (E.) lunare in its ornament and metric proportions (2). However, the other syntype is closer to Chlamys (Ch.) textoria in its possession of radial striae and since such ornament was specified in D'ORBIGNY's description, the latter specimen should perhaps be selected as lectotype. This interpretation appears to have been followed by COSSMANN (1916) and DUMORTIER (1869).

'P.' Philenor D'ORBIGNY was created for L. Pliensbachian specimens which fell within GOLDFUSS' (1836) hypodigm for 'P.' cingulatus, an E. (Entolium) species. In so far as there are apparently no European L. Pliensbachian E. (Entolium) species apart from E. (E.) lunare, D'ORBIGNY's hypodigm must be included in the latter species concept. However the single observed type (MNO 1843) is probably a representative of Ch. (Ch.) textoria so the status of secondary references to D'ORBIGNY's species for which no original remains (e. g. OPPEL, 1858) is in some doubt. The figured originals of STAESCHE'S (1926) 'Ch.' Philenor (GPHT) are almost certainly representative of E. (E.) lunare but that of KUHN'S (1936) 'Ch.' philenor (BSPHG) is more reminiscent of Camptonectes (C.) subulatus.

Text fig. 23: Entolium (E.) lunare - intersinal distance on right valve/length.

Text fig. 24: Entolium (E.) lunare - height of anterior auricle on right valve/length.

In the same way as for 'P.' Philenor, D'ORBIGNY created 'P.' Proeteus for Toarcian specimens which fell within GOLD-FUSS' hypodigm for 'P.' cingulatus. Since two E. (Entolium) species (E. (E.) lunare and E. (E.) corneolum) appear to coexist in the Toarcian it is impossible to be certain of D'OR-BIGNY's hypodigm in the absence of a diagnosis. The only syntype which the author has been able to discover (MNO 2079) is too poorly preserved for specific determination although H/L and PH/L (3) plot within the range of E. (E.) lunare. STAESCHF's (1926) figured originals to E. Proeteus (GPIT) are similarly indeterminate and thus specimens referred to this species by the latter author in BEHMEL and GFYER (1966) are also of uncertain affinities. WENDT's (1971) record from the Aalenian and Bajocian of Sicily almost certainly refers to E. (*E.*) corneolum.

A specimen (MNS) from the L. Pliensbachian referred by D'ORBIGNY to SCHUBLER'S (1833) Bajocian species 'P.' disciformis (= E. (E.) corneolum q. v.) in fact possesses the small auricles typical of E. (E.) lunare. Similarly, a specimen from the same horizon referred to SCHUBLER'S species by COSSMANN (1916) has the small byssal notch of E. (E.) lunare. Bearing in mind the known stratigraphic range of E. (E.) corneolum it

Text fig. 25: Entolium (E.) lunare - anterior hinge length/length.

Text fig. 26: Entolium (E.) lunare - posterior hinge length/length.

seems highly likely that unillustrated reports of pre-Toarcian occurrences of Schubler's species (Coquand, 1860; Terquem and PIETTE, 1865; POMPECKJ, 1897; JOLY, 1907; DUBAR, 1925; LANQUINE, 1929; DECHASEAUX, 1936) together with LEANZA'S (1942) and LENTINI'S (1973) poorly illustrated examples are in fact referable to E. (E.) lunare. GOLDEUSS' (1836) record of L. Jurassic examples of Phillips' species 'P.' demissus is likewise almost certainly a misnomer for E. (E.) lunare; his figured specimen (BSPHG) is from the M. Jurassic. However, specimens figured under 'P.' demissus from an unspecified horizon in Spitzbergen (LINDSTROM, 1866; LUNDGREN, 1883) exhibit the byssal notch typical of E. (E.) lunare and thus, bearing in mind the very limited development of the L. Jurassic in Spitzbergen, may constitute M. or even U. Jurassic representatives of the latter species. 'P.' Stewartianus LUNDGREN from an unspecified horizon in E. Greenland has a slight byssal notch and H/UA (150/140) within the range of E. (E.) lunare projected to larger sizes. It may be an U. Jurassic representative of the latter since it was compared with a species described from the Kimmeridgian, 'P.' validus LINDSTROM (= Camptonectes (C.) auritus).

BORISSIAN and IVANOFF'S (1917, pl. 1, fig. 4) figure of 'P.' vitreus (non ROFMER) depicts a specimen with a byssal notch that is undoubtedly from the L. Volgian (\simeq L. Tithonian) of Russia. However, it should be borne in mind for this and the above records from Spitzbergen and Greenland that *E. (E.) orbiculare* (q. v.) is present in the U. Jurassic of each area and since KELLY (1977) states that the right valve of the latter species may be smooth and possess a byssal notch there remains the possibility that *E. (E.) orbiculare* may be the only species present (however see p. 36). There is a rather more remote possibility that the above records may refer to a poorly known, essentially S. European species (see below).

'P.' callosus LUNDGREN, from E. Greenland, has metric proportions (4) within the range of *E. (E.) lunare*.

The figures of '*P.' lundgreni* MOBERG from S. W. Sweden appear to show divaricate striae and are thus indicative of *Camptonectes.* However, TROFDSSON (1951), who may have examined the types, has referred to MOBERG's species specimens whose small byssal notch, H/L, H/UA, I_R/L and HAA_R/L (5) is within the range of *E. (E.) lunare.* Metric proportions of MOBERG's figure (6) are also indistinguishable so the appearance of divaricate striae may be a misrepresentation of the divaricate fibres within the shell of *E. (E.) lunare.*

AH/L (46/130) and l_R/L (60.5/130) of the figure (1869, pl. 37, fig. 1) of 'P.' frontalis DUMORTIER from the U. Pliensbachian are considerably higher than those of measured specimens of E. (E.) lunare. However, this may well be due to inaccurate representation of the original for which DUMOR TIFR cites a height of 145 mm and length of 155 mm. Subsequent references to DUMORTHER'S species in PARONA (1892), ROMAN (1926), ROSENKRANTZ (1934, 1942) and DECHASEAUX (1936) are unaccompanied by figures so must remain doubtful. 'P.' (Entolium) Fraiponti Rollier, which was thought to represent possibly no more than a geographic race of 'P.' frontalis has H/UA (104/140) within the range of E. (E.) lunare projected to larger sizes. H/UA of the figure of 'Ch.' ('Pseudamussium') chartroni Cossman (7) from the Hettangian of France is also within the range of E. (E.) lunare. The depth of the byssal notch is more reminiscent of C. (C.) subulatus but in spite of COSSMANN's statement to the contrary the auricles of one figured specimen extend dorsally beyond the hinge line so his species may be an early and morphologically extreme representative of E. (E.) lunare. 'P.' Di-Blasii DI STEFANO, from the L. Lias of Sicily has rather pronounced comarginal ornament but as it is in other respects identical to E. (E.) lunare this may be another aspect of variation.

The equal-sized auricles of 'P.' sepultus QUENSTEDT, a small smooth species from the L. Lias of Swabia, suggest that it belongs to E. (E.) lunare rather than the common co-occurring

Text fig. 27: Outer surface of a slightly abraded right valve of *Entolium (E.) lunare* showing divaricate fibres. Specimen (BSPHG 1983 XVII 8) from Frodingham Ironstone; × 1.6.

species C. (C.) subulatus. However, the affinities of 'P.' amatus ANDLER, from the same horizon and region, diagnosed merely as a smooth flat shell with comarginal striae, could lie with either of the above species. 'P.' demissaries CROSS was given a similarly inadequate diagnosis but is probably synonymous with E. (E.) lunare rather than C. (C.) subulatus since the horizon of derivation (Frodingham Ironstone) is one in which the former species is much more abundant than the latter (see Section 7).

'P.' glaphyrus R. PHILIPPI was distinguished from the Callovian species 'P.' demissus (= E. (E.) corneolum) by the relatively undiagnostic criterion of auricle angularity. However, in so far as the species is described from the U. Pliensbachian (prior to certain records of E. (E.) corneolum) it probably belongs to E. (E.) lunare. Although described from the Callovian Entolium sp. A. DUFF has a clear byssal notch, unlike the much more common contemporaneous species E. (E.) corneolum, and may therefore be a late representative of E. (E.) lunare. The small size of the available material does not however allow exclusion of the possibility that E. sp. A is an early representative of E. (E.) orbiculare (see above) or an essentially S. European Tithonian species which bears a superfical resemblance to E. (E.) lunare but which can be readily distinguished in large specimens by the much higher HAA_R/L (8, 9; specimens referred respectively to '*P*.' *insularum* D'ORBIGNY [MNS] and '*Ch*.' cf. *poecilographa* GEMMELLARO and DI BLASI [GPIT]).

GOLDFUSS' (1836) name 'P.' calvus (= C. (C.) subulatus q. v.) has been misapplied by STAESCHE (1926) and TROEDSSON (1951) to figured specimens with the small byssal notch typical of *E. (E.) lunare*. It is thus possible that unillustrated records of GOLDFUSS' species in D'ORBIGNY (1850), TATE and BLAKE (1876) and JOLY (1907) may also refer to *E. (E.) lunare*.

5. STRATIGRAPHIC RANGE

Two specimens from the Planorbis zone (Hettangian) of the Italian Alps (BISTRAM, 1903) together with an indeterminate number of specimens from the same horizon in S. Germany (STAESCHE, 1926), ROEMER'S (1839) material, probably from N. Germany, and questionable specimens from the W. Paris Basin (COSSMANN, 1904; see Section 4) constitute the earliest records of E. (E.) lunare. The species is recorded rarely in the Angulata zone of the Rhone basin (DUMORTIER, 1864) and may also occur at the same horizon in S. Germany (AN-DLFR, 1858; see Section 4). DECHASEAUX (1836) records the species from an unspecified horizon in the Hettangian of the E. Paris Basin. E. (E.) lunare becomes common in the Bucklandi zone and is thereafter widespread and locally common until the U. Pliensbachian. Toarcian records are equivocal because all potential examples of E. (E.) lunare have poorly preserved auricles and so cannot definitely be separated from E. (E.) corneolum by the diagnostic criterion. However, a specimen in the GPIG (Pl. 1, Fig. 23) from the Toarcian of S. Germany has H/UA (10) well outside the range of E. (E.) corneolum and this specimen together with four others from the same area in the GPIT, one from Yorkshire (SM J50642) and one from Gloucestershire (BM L94280), all of which plot within the range of text fig. 21, seems to indicate that E. (E.) lunare extended into the Toarcian. All but the first mentioned are from the upper substage.

M. and U. Jurassic bibliographic records which may refer to *E. (E.) lunare* must be treated with great caution (see Sec-

Text fig. 28: Entolium (E.) lunare - European distribution.

44

Text fig. 29: Entohum (E.) lunare - World distribution (Pliensbachian reconstruction).

tion 4). A slight byssal notch is present in a smooth right valve (OUM J26053) from the L. Tithonian (Pectinatus zone) near Oxford but in view of the possible development of such a morphology in *E. (E.) orbiculare* (see p. 36) it can only tentatively be accepted as an U. Jurassic record of *E. (E.) lunare*.

6. GEOGRAPHIC RANGE

Within Europe (text fig. 28) *E*. (*E*.) lunare is a widespread species. Outside Europe (text fig. 29) occurrences are widely dispersed and are not connected by obvious migration routes. Records from S. America might be understood as the result of a migration along the northern shores of Tethys by linking occurrences in the Carpathians (POMPECKJ, 1897) and Japan (HAYAMI, 1961). However depending on the tectonic reconstruction adopted records from the Carpathians might be held to indicate migration along the southern shores of Tethys, perhaps utilising a marine connection between Africa, Antarctica and S. America (see p. 25).

7. DESCRIPTION OF ECOLOGY

E. (E.) lunare first occurs commonly in the Arietenkalk (L. Sinemurian, Bucklandi zone) of S. W. Germany in association with quite common examples of Camptonectes (C.) subulatus and Chlamys (Ch.) textoria. The maximum height of E. (E.) lunare is 51 mm (GPIT). Deposits of the same age and probably similar facies in the Rhone also contain abundant E. (E.) lunare in association with Pseudopecten (Ps.) equivalvis (DUMORTIER, 1867). In the U. Sinemurian (Obtusum zone) part of the Frodingham Ironstone, a condensed chamosite oolite in Lincolnshire, E. (E.) lunare occurs with all the above species but is much the most numerous element of the fauna, attaining a maximum height of 57 mm (ScM 1099). In contemporaneous argillaceous facies (HALLAM, 1963) and similar facies in the L. Pliensbachian E. (E.) lunare is greatly outnumbered by C. (C.) subulatus. However, in neretic limestones, probably of L. Pliensbachian age (see p. 79) in Sicily (DI STEFANO, 1886) C. (C.) subulatus is absent

and E. (E.) lunare occurs commonly with Ps. (Ps.) vevrasensis. L. Pliensbachian sandstones in E. Greenland (ROSEN-KRANTZ, 1934) are reported to contain abundant examples of E. frontale (DUMORTIER), a probable synonym of E. (E.) lunare (see Section 4) in association with common Ps. (Ps.) equivalvis. The latter species greatly outnumbers E. (E.) lunare in the condensed chamosite oolites ('Pecten' Beds) of the Ibex zone in Gloucestershire and Lincolnshire and in sandstones (Sandy Series) and condensed chamosite oolites (Cleveland Ironstone) of the Margaritatus zone in Yorkshire. A similar situation pertains in ironstones of the Spinatum zone (Marlstone) in the Midlands where the species reaches a maximum height of 116 mm (BM 46444). However, in sandstones of the Margaritatus zone (Thorncombe Sands) in Dorset the relative proportions are reversed although the maximum height of E. (E.) lunare is only 37.5 mm (BM LL30727). In contemporaneous clays in Yorkshire E. (E.) lunare is greatly outnumbered by C. (C.) subulatus and reaches a maximum height of only 25 mm (author's collection). Apart from the above cases, E. (E.) lunare, although widespread, is only known to be common in the Gresten Beds of Austria (TRAUTH, 1909) where Ch. (Ch.) textoria and Ps. (Ps.) dentatus are also quite common.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that *E. (E.) lunare* exhibited considerable eurytopy with respect to substrate. However, if maximum size is taken as a measure of environmental favourability then, at least in the U. Pliensbachian, condensed ironstones can be seen to have offered more suitable conditions than sands or clays. This can presumably be explained, in the same way as suggested for *Ps. (Ps.) equivalvis* (see p. 71) by the reduced turbidity and possibly increased temperature characteristic of ironstone deposition. Specimens from the Sinemurian Arieten-Kalke which are not much smaller than those from the roughly contemporaneous Frodingham Ironstone may well be derived from condensed horizons within the predominantly argillaceous sequence (URTICHS, 1971). If abundance is taken as a measure of environmental favourability then sandstones appear to have been just as suitable as ironstones. In both facies a frequent inverse correlation in the numbers of *E. (E.) lunare* and *Ps. (Ps.) equivalvis* is strong evidence for competition. In sandstones the dominant species appears to fluctuate at random from place to place but in ironstones *E. (E.) lunare* apparently lost its competitive superiority after the Sinemurian and *Ps. (Ps.) equivalvis* became dominant. There is no evidence for a similar competitive reaction with *Ps. (Ps.) dentatus, Ps. (Ps.) veyrasensis* or *Ch. (Ch.) textoria.*

Competition with C. (C.) subulatus is suggested by the tendency after the L. Sinemurian for E. (E.) lunare to be most abundant in arenaceous facies, a trend essentially opposite to that observed in the former species (q. v.).

Recent analogues of *E. (E.) lunare* are provided by species of *Amusium*. Most live in deep water (KNUDSEN, 1967) but some, such as *A. pleuronectes* and *A. japonicum*, migrate considerable distances into shallow water for the purpose of spawning (B. MORTON, pers. comm., 1978). Swimming ability is excellent, with 'flights' of at least 10 m being possible, even at shell lengths near 100 mm. Stationary individuals recess into the sea bed.

9. FUNCTIONAL MORPHOLOGY

The small juvenile byssal notch and its subsequent allometric reduction in size imply that E. (E.) *lumare* could only have been byssally attached for a very short period early in ontogeny.

The large, smooth, low convexity shell is paradigmatic for reclining in the high energy environments favoured by the species. The dorsally extended auricles of the right valve may have assisted reclining in the same way as suggested for *Propeamussium (P.) laeviradiatum* (see p. 31). The thin shell is non-paradigmatic for reclining but probably represents an adaptation towards improved swimming efficiency, combined with ontogenetic increase in the umbonal angle. Smoothness and low convexity are also adaptive for swimming, but large size is not. However, bearing in mind the sizes at which swimming is possible in *Amusium* (see Section 8), it seems likely that the thinness of the shell offset any disadvantage resulting from the greater weight associated with large size.

Due to the rarity of bivalved specimens and generally poor preservation of the muscle scars, it has proved impossible to judge whether the high values for adductor muscle obliquity (THAYER, 1972) and moment (GOULD, 1971) which contribute towards the considerable swimming ability of *Amusium*, are also characteristic of *E*. (*E*.) lunare.

The internal costae which presumably compensate for the reduced strength and stiffness of the smooth, non-plicate shell in *Amusium* would appear to be functionally represented by divaricate fibres within the shell of *E. (E.) lunare*.

10. ORIGINS AND EVOLUTION

Since E. (E.) lunare is first recorded in the Planorbis zone its origins probably lie in the Trias. E. (E.) discites (SCHLOTHEIM), a Trias species with a slight byssal notch seems to be the most likely ancestor.

There are no phyletic trends within *E*. (*E*.) lunare apart from a marked increase in maximum height in the same ironstone facies from 57 mm in the U. Sinemurian to 116 mm (possibly 145 mm, see Section 4) in the U. Pliensbachian. It should, however, be noted that the value of $3^{1/2''}$ (88 mm) cited for the "diameter" of ROEMER's holotype from the Hettangian (BRAUNS, 1871) almost certainly implies a height greater than that attained in the U. Sinemurian, albeit in an isolated specimen.

The Toarcian decline of *E. lunare* may well be due to the widespread development of unfavourable bituminous shale facies in the lower substage. However, the fact that there appear to be at least a few U. Toarcian representatives (see Section 5) suggests that competition with *E. (E.) corneolum*, a species which apparently evolved in the latter substage, may also have played a part.

Entolium (Entolium) corneolum (YOUNG and BIRD 1828) Pl. 1, Figs. 24–26, ? Figs. 20, 22, 27; text figs. 30–37

Synonymy

	1828	, Pecten corneolus sp. nov; YOUNG and BIRD,
		p. 234, pl. 9, fig. 5.
V^{*}	1829	Pecten demissus sp. nov; PHILLIPS, pl. 6, fig. 5.
3	1833	Pecten Phillipsii sp. nov; VOLTZ in THURMANN,
		p. 32.
	1833	Pecten disciformis sp. nov; SCHUBLER in
		v. Ziften, p. 69, pl. 53, fig. 2.
pv?	1836	Pecten cingulatus sp. nov; GOLDFUSS, p. 74, pl. 99,
		figs. 3a, 3b.
?	1836	Pecten subcomatus sp. nov; ROEMER, p. 70, pl. 3,
		fig. 17.
	1836	Pecten vitreus sp. nov; ROEMER, p. 72, pl. 13,
		fig. 7.
	1836	Pecten solidus sp. nov; ROEMER, p. 212, pl. 8,
		fig. 5.
	1839	Pecten spathulatus sp. nov; ROEMER, p. 26, pl. 18,
		fig. 22.
non	1850	Pecten disciformis SCHUBLER, D'ORBIGNY, v. 1,
		p. 237.
v?	1850	Pecten Proeteus sp. nov; D'ORBIGNY, v. 1, p. 257.
\mathbf{v}^*	1850	Pecten silenus sp. nov; D'ORBIGNY, v. 1, pp. 284,
		314 (BOULE, 1910, v. 5, p. 69, 1909, v. 4, pl. 20,
		fig. 12).
\mathbf{v}°	1850	Pecten Rhypheus sp. nov; D'ORBIGNY, v. 1, p. 314
		(BOULE, 1913, v. 8, p. 92, pl. 2, figs. 24, 25).
$v^{\circ}?$	1850	Pecten subcingulatus sp. nov; D'ORBIGNY, v. 1,
		p. 374 (BOULE, 1927, v. 16, p. 132, 1928, v. 17,
		pl. 6, fig. 9).
non	1852	Pecten cingulatus GOLDFUSS; QUENSTEDT, p. 506,
		pl. 40, fig. 41.
	1853	Pecten disciformis SCHUBLER; CHAPUIS and DE-
		WALQUE, p. 21, pl. 31, fig. 2.
	1855	Pecten demissus PHILLIPS; MORRIS and LYCETT,
		p. 127, pl. 14, fig. 7.
$-\nabla^{\otimes}$	1855	Pecten censoriensis sp. nov; COTTEAU, p. 112.
V	1858	Pecten demissus PHILLIPS; QUENSTEDT, pp. 353,
		381, 553, pl. 48, figs. 6, 7, pl. 72, fig. 27.
$v^{\oplus} ?$	1858	Pecten demissus Gingensis subsp. nov; QUEN-
		STEDT, p. 378, pl. 51, fig. 1.
	1858	Pecten spathulatus ROEMER; QUENSTEDT, p. 433,
		pl. 59, fig. 13.
(?)	1858	Pecten Renevieri sp. nov; OPPEL, p. 420.
	1860	Pecten Silenus D'ORBIGNY; COQUAND, p. 68.

	1860	Pecten demissus Phillips; Coquand, p. 73.
	1860	Pecten solidus ROEMER; COQUAND, p. 79.
	1860	Pecten demissus PHILLIPS; DAMON, pl. 9, fig. 3.
2	1862	Pecten Nicoleti sp. nov: ETALLON in THURMANN
		and ÉTALLON p. 263 pl. 37 for 5
	10/3	Der II Darren Transverse and Érrer
	1862	Pecten solidus KOFMFK; IHURMANN and ETAL-
		LON, p. 262, pl. 37, fig. 5.
	1862	Pecten demissus PHILLIPS; TRAUTSCHOLD, p. 2,
		pl. 7, figs. 2, 4 (non fig. 3).
non	1866	Perten demissus PHILLIPS: LINDSTROM p. 14.
non	1000	al 2 fine 0 10
		pl. 5, figs. 9, 10.
	1867	Pecten spatulatus ROFMER; LAUBE, p. 9.
	1867	Pecten demissus PHILLIPS; LAUBE, p. 10.
2	1867	Pecten Gingensis QUENSTEDT; WAAGEN, p. 627.
>	1867	Perten ablongus sp. nov: WAAGEN, p. 679
	10/0	Desten drasformus Schulpher, DUMODTICE = 199
1	1007	Peter ascijonais Schublek, Domoknek, p. 199.
	1869	Pecten cingulatus GOLDEUSS; TERQUEM and
		JOURDY, p. 127.
	1875	Pecten solidus ROEMER; DE LORIOI and PELLAT,
		n 189 nl 22 fig 5
~	107/	$P_{1} = P_{1} + P_{2} + P_{3} + P_{4} + P_{4$
- f	1876	Pecten Puatensis sp. nov; FAVRE, p. 65, pl. 7, tig. 5.
?	1881	Pecten vitreus ROEMER; DE LORIOL, p. 93, pl. 13,
		figs. 3–5.
	1887	Pecten (Entohum) sutreus ROEMER ROEDER
	1002	E C al 2 for 2 th al 1 for the d
	1000	p. 50, pi. 2, figs. 2a, 20, pi. 4, figs. 14a–d.
	1883	Pecten demissus PHILLIPS; LAHUSEN, p. 24, pl. 2,
		fig. 4.
non	1883	Pecten demissus PHILLIPS; LUNDGREN, p. 16,
		pl 2 fig 12
	1007	Distriction With Destruction (0)
	1885	Pecten demissus PHILLIPS; WHIDBORNE, p. 498.
	1883	Pecten demissus var. mutile var. nov; WHID-
		BORNE, p. 499.
(2)	1883	Pecten amagnesis OUENSTEDT: WHIDBORNE.
(+)	100.	- 100
		p. 477.
1	1884	Pecten disciformis SCHUBLER; SIMPSON, p. 172.
(?)	1885	Pecten (Amusium) Pilatensis FAVRE; NICOLIS and
		Parona, p. 45.
	1886	Perten disciformis SCHUBLER ROTHPLETZ, p. 36.
	1000	Paster Public IN' DEPIGNIN: SCHI IDDE p 126
	1999	Petter Rypheus D'ORBIGNT, SCHEIPPE, p. 120,
		pl. 2, fig. 6.
	1893	Pecten (Entoluum) cingulatus GOLDFUSS; BOTTO-
		MICCA, p. 174.
	1993	Pactor autrons ROENIER: DE LORIOL D 312 D 33
	1075	C = 0
		ng. ð.
	1893	Chlamys (Pecten) vitrea (ROEMER); SIEDMIRADZ-
		кі, р. 119.
	1894	Pecten (Entolum) disciformis SCHUBLER;
		MORICKE p 37
	1007	Defection Department London = 15
	1895	recien vureus KOFMER; DE LORIOL, p. 45.
	1896	Pecten demissus PHILLIPS; SEMENOW, p. 63.
	1897	Pecten vitreus ROEMER; DE LORIOL, p. 129, pl. 16,
		figs. 5, 6.
2	1897	Pecten demissus PHILLIPS: POMPECKL, p. 779.
	1007	Derive Leifennie Schuppen, Population, 779
1	1897	Pecten aiscijormis SCHUBLER; POMPLCKJ, p. 777.
	1898	Pecten (Entolium) cingulatus GOLDFUSS; GRECO,
		p. 109, pl. 8, figs. 30, 31.
	1898	Pecten (Entolyum) disciformis SCHUBLER: TORN-
	1898	Pecten (Entolum) disciformis SCHUBLER; TORN-
	1898	Pecten (Entolum) disciformis SCHUBLER; TORN- QUIST, p. 31.
	1898 1899	Pecten (Entolium) disciformis SCHUBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215,
	1898 1899	Pecten (Entoluum) disciformis SCHUBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6.
V	1898 1899 1903	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK-
V	1898 1899 1903	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8.
v	1898 1899 1903	Pecten (Entolium) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entolium) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten scitterin B.(ILVIR: IL(WAISE), p. 251, pl. 2
v	1898 1899 1903 1904	Pecten (Entolium) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entolium) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROLMER; ILOVAISKY, p. 251, pl. 8,
v	1898 1899 1903 1904	Pecten (Entoluum) disciformis SCHUBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHUBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13.
v	1898 1899 1903 1904 <i>1905</i>	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL-
V	1898 1899 1903 1904 <i>1905</i>	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743.
V (2)	1898 1899 1903 1904 <i>1905</i>	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROTMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743. Pecten (Entoluum) vingensis OUENSTEDT: KILLAN
v (?)	1898 1899 1903 1904 <i>1905</i>	Pecten (Entolium) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entolium) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vertreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743. Pecten (Entolium) gingensis QUENSTEDT; KILIAN and GUEBHARD, p. 743.
v (?)	1898 1899 1903 1904 <i>1905</i> <i>1905</i>	Pecten (Entoluum) disciformis SCHUBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHUBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743. Pecten (Entoluum) gingensis QUENSTEDT; KILIAN and GUEBHARD, p. 743.
v (?)	1898 1899 1903 1904 <i>1905</i> 1905	Pecten (Entoluum) disciformis SCHUBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHUBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten entreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743. Pecten (Entoluum) gingensis QUENSTEDT; KILIAN and GUEBHARD, p. 743. Pecten cf. disciformis SCHUBLER; KILIAN and
v (?)	1898 1899 1903 1904 1905 1905 1905	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten entreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743. Pecten (Entoluum) gingensis QUENSTEDT; KILIAN and GUEBHARD, p. 743. Pecten cf. disciformis SCHÜBLER; KILIAN and GUEBHARD, p. 743.
v (?)	1898 1899 1903 1904 1905 1905 1905	Pecten (Entoluum) disciformis SCHÜBLER; TORN- QUIST, p. 31. Pecten demissus PHILLIPS; SIMIONESCU, p. 215, pl. 2, fig. 6. Pecten (Entoluum) disciformis SCHÜBLER; BURCK- HARDI, p. 22, ? p. 8. Pecten vitreus ROLMER; ILOVAISKY, p. 251, pl. 8, fig. 13. Pecten (Chlamys) cf. Rypheus D'ORBIGNY; KIL- IAN and GUEBHARD, p. 743. Pecten (Entoluum) gingensis QUENSTEDT; KILIAN and GUEBHARD, p. 743. Pecten cf. disciformis SCHÜBLER; KILIAN and GUEBHARD, p. 743. Pecten (Entolium) demissus PHILLIPS; KILIAN and

905	Pecten (Entolium) solidus	ROEMER;	Kilian	and
	GUEBHARD, p. 818.			

- v 1905 Pecten censoriensis COTTEAU; PERON, p. 232, pl. 10, figs. 5, 6.
 - 1907 Pecten demissus PHILLIPS; DENINGER, p. 453.
 - 1908 Pecten (Entolum) vitreus ROEMER; LEWINSKI, p. 435.
 - 1910 Entoluon demissus (PHILLIPS); LISSAJOUS, p. 363, pl. 10, figs. 7, 8.
 - 1910 Pecten (Entolium) demissus PHILLIPS; RAVN, p. 463.
- ? 1910 Pecten (Entolium) cingulatus GOLDFUSS; RAVN, p. 464, pl. 33, fig. 7.
 - 1911 Pecten (Entolium) vitreus ROEMER; BODEN, p. 193, pl. 7, figs. 17, 18.
 - 1911 Pecten (Entoluum) disciformis SCHUBLER; ROL-LIFR, p. 260.
- ? 1911 Pecten (Entolium) Giengensis sp. nov; ROLLIER, p. 260.
 - 1911 Pecten (Entolium) Silenus D'ORBIGNY; ROLLIER, p. 260.
 - 1911 Pecten (Entolium) Rypheus D'ORBIGNY; ROLLIER, p. 261.
 - 1911 Pecten (Entolum) spathulatus ROEMER; ROLLIER, p. 262.
- ? 1911 Pecten (Entolium) cingulatus GOLDFUSS; ROLLIER, p. 263.
 - 1915 Pecten demissus PHILLIPS; KRENKEL, p. 296.
- non 1916 Entolium disciforme (SCHUBLER); COSSMANN, p. 45, pl. 8, figs. 10, 11.
 - 1916 Pecten demissus PHILLIPS; DOUVILLE, p. 75, pl. 10, fig. 2.
 - 1917 Pecten demissus PHILLIPS; BORISSIAK and IVANOFF, p. 3, pl. 1, figs. 5, 8, 10, 15, 17.
 - 1917 Pecten spatbulatus ROEMER; BORISSIAK and IVANOFF, p. 6, pl. 1, fig. 13.
 - 1917 *Pecten vitreus* ROFMER; BORISSIAK and IVANOFF, p. 8, pl. 1, figs. 1, 2, 12, 16 (non fig. 4).
 - 1919 Entolium silenus (D'ORBIGNY); COSSMANN, p. 436.
 - 1920 Pecten solidus ROEMER; FAURE-MARGUERIT, p. 55.
 - 1923 Pecten cf. vureus ROEMER; LEWINSKI, p. 60, pl. 2, fig. 11.
 - 1923 Syncyclonema demissum (PHILLIPS); LISSAJOUS, p. 167.
 - 1923 Syncyclonema spathulatum (ROFMFR); LISSAJOUS, p. 168.
 - 1924 *Entolium leachi s*p. nov; MCLEARN, p. 48, pl. 5, figs. 3, 11.
 - 1924 Pecten (Entolium) demissum PHILLIPS; HENNIG, p. 14, pl. 2, figs. 1, 2.
 - v? 1926 Entolum Proetens (D'ORBIGNY); STAESCHE, p. 92, pl. 6, figs. 3, 4.
 - v 1926 Entolium Renevieri (OPPEL); STAESCHE, p. 93, pl. 3, fig. 4, pl. 6, fig. 6.
 - ? 1926 Entolium cingulation (GOLDEUSS); STAESCHE, p. 93, pl. 4, figs. 3, 4.
 - v 1926 Entolium deniissum (PHILLIPS); STAESCHE, p. 99, pl. 4, fig. 5.
 - v? 1926 Entolium Gingense (QUENSTEDT); STAESCHE, p. 102, pl. 5, figs. 1, 2.
 - ? 1926 Entolum aff. solido (ROEMER); STAESCHE, p. 103, pl. 3, figs. 13-15.
 - 1926 Entoluum disciformis (SCHUBLER); ROMAN, p. 155.
 - 1926 Entolium spathulatus (ROEMIR); ROMAN, p. 168.
 - 1926 Entolium vitreus (ROEMER); ROMAN, p. 198.
 - 1929 Pecten (Entolum) demissus PHILLIPS; LANQUINE, p. 199.
 - 1929 Pecten (Entolium) valauryense sp. nov; LAN; QUINE, p. 324, pl. 10, fig. 7.

- v 1930a Entolium demissum (PHILLIPS); ARKELL, p. 91, pl. 7, fig. 4, pl. 9, fig. 8, text figs. 15–17.
- 1931 Pecten (Camptonectes) vitreus ROEMER; YIN, p. 118.
- 1931 Pecten (Entolium) cf. demissus PHILLIPS; SOKO-LOV and BODYLFVSKY, p. 50, pl. 3, fig. 5.
- (?) 1931 Pecten (Entolium) cf. Nicoleti ÉTALLON; SOKO-LOV and BODYLEVSKY, p. 52.
 - 1932 Entolium demissum (PHILLIPS); SPATH, p. 112, pl. 26, fig. 2.
 - 1933 Pecten (Entolium) solidus ROEMER; DIETRICH, p. 65, pl. 8, figs. 118, 119.
 - 1934 Pecten (Entolium) demissus (PHILLIPS); STOLL, p. 22, pl. 2, fig. 21.
 - ? 1934 Entolium deniissum (PHILLIPS); ROSENKRANTZ, p. 117.
 - 1935a Entolium demissum (PHILLIPS); ARKELL, p. x, pl. 53, fig. 3.
 - 1935 *Pecten (Entolium)* cf. *demissus* (PHILLIPS); SPATH, p. 56.
- ? 1936 Entolium cingulatus (GOLDFUSS); DECHASEAUX, p. 60.
- 1936 Entolium disciformis (SCHUBLER); DECHASEAUX, p. 61, pl. 8, figs. 12, 13.
- 1936 Entolium demissus (PHILLIPS); DECHASEAUX, p. 61.
- (?) 1936 Entolium Gingensis (QUENSTEDT); DECHASEAUX, p. 63.
 - 1936 Entolium spathulatus (ROEMER); DECHASEAUX, p. 63.
- ? 1936 Entolium cf. deniissum (PHILLIPS); WANDEL, p. 481.
- 1938 Entolium demissum (PHILLIPS); WEIR, p. 46, pl. 3, fig. 8.
- non 1939 Entolium disciforme (SCHUBLER); STEFANINI, p. 177, pl. 19, fig. 15, pl. 20, fig. 1.
 - 1939 *Entolium demissum* (PHILLIPS); STEFANINI, p. 179, pl. 22, figs. 2, 3.
 - 1948 Entolium corneolum (YOUNG and BIRD); COX and ARKELL, p. 15.
 - 1950 Entolium corneolum (YOUNG and BIRD); CHAN-NON, pp. 247, 248.
 - ? 1951 Entolium cingulatum (GOLDFUSS); TROEDSSON, p. 217, pl. 20, figs. 1–3, pl. 21, figs. 11, 12.
 - 1952 Entolium demissum (PHILLIPS); MAKOWSKI, p. 17.
 1954 Pecten (Entolium) disciformus (SCHUBLER); DEAN,
 - p. 176.
 - 1957 Entolium leacht MCLEARN; FREBOLD, p. 21.
 - 1961 Entolum cf. disciforme (SCHUBLER); HAYAMI, p. 255.
 - 1961 Entolium demissum (PHILLIPS); BARBULESCU, pp. 701, 702.
 - 1961 Entolium cf. cingulatum (GOLDFUSS); BARBU-LESCU, p. 702.
- non 1964 Entolium cingulatum (GOLDFUSS); WELLNHOFER, p. 35, pl. 1, figs. 28–30.
 - 1965 Entolium corneolum (YOUNG and BIRD); COX, p. 51.
 - ? 1965 *Entolium cingulatum* (GOLDFUSS); COX, p. 52, pl. 6, fig. 15.
 - ? 1966 Entolium proteus (D'ORBIGNY); BEHMEL and GEYER, p. 28.
 - ? 1966 Entolium demissus (PHILLIPS); BEHMEL and GEYER, p. 28.
 - ? 1970 Entolium cingulatum (GOLDFUSS); BEHMEL, p. 62.
 1971 Entolium cingulatum (GOLDFUSS); BARBULESCU, p. 277.
 - ? 1971 Entolium proeteus (D'ORBIGNY); WENDT, p. 156.
 1971 Entolium corneolum (YOUNG and BIRD); WENDT, pp. 159, 161.
 - ? 1971 Entolium cf. cingulatum (GOLDFUSS); WENDT, p. 160.

- 1971 Entolium corneolum (YOUNG and BIRD); FUR-SICH, p. 320.
 ? 1974 Entolium cingulatum (GOLDFUSS); NITZOPOULOS,
- ? 1974 Entolium cingulatum (GOLDFUSS); NITZOPOULOS, p. +6.
 - 1975b Entolium demissum (PHILLIPS); HALLAM, p. 384.
 1977 Entolium demissum (PHILLIPS); DIETL, pl. 2,
- fig. 4. 1977 Entolium demissum (PHILLIPS); J. WRIGHT,
- p. 330. 1978 Entolium (Entolium) corneolum (YOUNG and
- BIRD); DUFF, p. 62, pl. 4, figs. 25, 29, 30, pl. 5, figs. 3–5, text fig. 20.
- 1978 Entolium corneolum (YOUNG and BIRD); BROOK-FIELD, pp. 10, 15, 17, 26.

Neotype of *Pecten corneolus* YOUNG and BIRD 1828, p. 234, pl. 9, fig. 5 designated by DUFF, 1978, p. 62; OUM J8151; figured ARKELL, 1930a, pl. 7, fig. 4; H: 68, AL: 26, $I_R: 41$, HAA_R: 16.5, UA: 113; Osmington Oolite (M. Oxfordian), Malton, Yorkshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'No. 5, also from the oolite, is smooth, brown, and thin like SOWERBY'S *P. corneus*, Tab. 204; but it is more oblong, and has smaller beaks. We may give it the name *P. corneolus*.'

2. AMENDED DIAGNOSIS

Distinguished from E. (E.) *lunare* by the lack of a byssal notch and from E. (E.) *orbiculare* by the lack of comarginal grooves on the right valve.

3. AMENDED DESCRIPTION

Essentially similar to *E. (E.) lunare*, differing by the diagnostic lack of a byssal notch (Pl. 1, Fig. 24), by the slower allometric reduction in H/L (text fig. 30), by the smaller maximum height (90 mm; NM, YM 531), by the slower rate of increase in umbonal angle, leading to generally higher H/UA values (text fig. 32), by the equality and isometric increase of the intersinal distance in both valves (text. figs. 33, 34), leading to much higher I/L values in the right valve, and by the isometric increase in height of the anterior auricle and probable allometric increase in the separation of the auricular apices, leading to higher values of HAA_R/L (text fig. 35) and AL/L (text fig. 31).

4. DISCUSSION

Examples of the species described in Section 3 have most often been referred to 'Pecten' demissus PHILLIPS. The sole known type (YM 202), a rather atypical form with a narrow umbonal angle (1), was said by ARKELL (1930a) to exemplify Oxfordian forms of Entolium as distinct from Bajocian and Bathonian forms which were said to have a larger umbonal angle. ROEMER's (1836) species 'P.' solidus (2) and 'P.' vitreus (3), also from the Oxfordian, were placed in synonymy with 'P.' demissus on the basis of comparable umbonal angles. ARKELL originally considered that Bajocian and Bathonian forms should be referred to D'ORBIGNY'S (1850) species 'P.' Rhypheus (syntypes [2] MNO 2908) but he later (1935a)

Text fig. 31: Entolium (E.) corneolum - separation of auricular apices/length.

Text fig. 32: Entolium (E.) corneolum - heigth/umbonal angle.

considered that they should be united with forms referred to 'P.' demissus (a conclusion supported by text fig. 32) under the slightly earlier name of 'P.' corneolus YOUNG and BIRD (1828). The figure of the latter species is poor and the original is now lost. However, the description (see Section 1) leaves little doubt as to its affinities and DUFF has now designated an appropriate neotype (OUM J8151; 4). Middle Jurassic representatives of *E. (E.) corneolum* have usually been referred to either 'P.' disciformis SCHUBLFR or 'P.' spathulatus ROEMER. H/UA of the original figures of both species (5 and 6 respectively) from the M. Jurassic of Germany, is within the range of *E. (E.) corneolum* although that of 'P.' spathulatus is near the limit of variation in measured specimens.

LINDSTROM'S (1866) and LUNDGREN'S (1883) incorrect records of PHILLIPS' species are discussed under *E. (E.) lunare*. Because of the possibility of confusion with the latter species in the Toarcian, unfigured records of PHILLIPS' species from that stage in POMPECKJ (1897), ROSENKRANTZ (1934), WANDEL (1936), DEAN (1954) and BEHMEL and GEYER (1966) must be treated with considerable caution. Unfigured Toarcian records of SCHUBLER'S species in DUMORTIER (1869), SIMPSON (1884), POMPECKJ (1897), BURCKHARDT (1903) and DE-CHASEAUX (1936) must be similarly treated. Pre-Toarcian figured specimens reffered to SCHUBLER'S species by D'ORBIGNY (1850) and COSSMANN (1916) in fact belong to *E. (E.) lunare* as, most probably, do a number of unfigured specimens discussed under the latter species. STEFANINI'S (1939) figured specimen from the Bajocian of Somalia, referred to *E. (E.)* disciforme, exhibits quite pronounced radial ornament and is therefore not representative of *E. (Entolium).* TRAUTSCHOLD'S (1862, pl. 7, fig. 3) figured specimen from the Tithonian of Russia, referred to '*F.' demissus*, exhibits a large byssal notch and is probably an example of *Camptonectes*. TAUSCH'S (1890) unfigured record of ROEMER'S '*P.' spathulatus* from the Toarcian of the S. Alps must be viewed with the same scepticism as other unillustrated records of *E. (E.) corneolum* from the stage. DF LORIOL'S (1881) illustrated record of ROEMER'S '*P.' vitreus* and STAESCHE'S (1926) illustrated record of ROEMER'S '*P.' solidus* both refer to specimens with rather pronounced comarginal ornament which may thus be referable to *E. (E.) orbiculare*.

BORISSIAK and IVANOFF'S (1917, pl. 1, fig. 4) figure of 'P.' vitreus depicts a specimen with a slight byssal notch which is thus not referable to E. (E.) corneolum. In the present state of knowledge (see p. 36) it is impossible to say whether it should be referred to E. (E.) lunare or E. (E.) orbiculare.

'P.' subcomatus ROEMER from the Bathonian has H/UA (7) only just within the range of E. (E.) corneolum and until the type material is examined the possibility cannot be entirely excluded that the divaricate lines on the figure are in fact representative of the divaricate striae of Camptonectes (C.) laminatus. The fine radial striae on a syntype of 'P.' subcingulatus D'ORBIGNY (MNO 3763) from the Oxfordian suggest that the species is referable to Propeamussium, despite its en-

Text fig. 33: Entolium (E.) corneolum - intersinal distance on left valve/length.

Text fig. 34: Entolium (E.) corneolum - intersinal distance on right valve/length.

50

tolioid form. However, the syntypes of '*P*.' silenus D'OR BIGNY (MNO 2904) are completely smooth and have metric proportions (8) well within the range of *E*. (*E*.) corneolum.

The subspecies 'P.' demissus Gingensis QUENSTEDT was erected for a large specimen (GPIT) from the Bajocian of Gingen (S. Germany) with large, symmetric auricles. Apart from I_L/L all metric proportions (9) plot within the range of E. (E.) corneolum and the absence of intermediate sized specimens precludes any assessment of whether the large $I_{\rm I}/L$ (54/88) is the product of some hitherto undetected allometry or is indicative of a more profound difference. Topotype specimens (identified with a glyph) of which only five are known (GPIT, GPIG [3], MNS) plot within the range of E. (E.) corneolum projected to larger sizes but have strong auricular crura and thick shells (Pl. 1, Fig. 27) which may justify WAAGEN's (1867) elevation of the subspecies to specific rank. Waagen erected a further species, 'P'. oblongus, for forms with large auricles from the Bajocian of Gingen. Although unillustrated it seems quite possible that they are synonymous with 'P.' Gingensis, if not with E. (E.) corneolum. WHIDBORNE (1883) recorded a further unfigured specimen of 'P.' gingensis from the Northampton Sand Ironstone (Aalenian) and also created the variety inutile for forms of 'P.' demissus with large auricles. It seems likely that they too are representative of 'P.' Gingensis. WHIDBORNE's variety celatus was said to have radiating lines and may therefore be representative of Propeamussium rather than E. (Entolium).

The figure of 'P.' Nicoleti ÉTALLON (? holotype: École cantonale de Porrentruy [WANNIER and PANCHAUD, 1977]) from the Kimmeridgian of Switzerland has extremely high H/L and H/UA (10) but at least with respect to the latter parameter it is comparable to the single type of 'P.' demissus PHILLIPS (1) and may therefore be no more than a narrow form of E. (E.) corneolum. The syntypes of 'P'. censoriensis COTTEAU (MNS B. 03983; Pl. 1, Fig. 26) from the Oxfordian of the Yonne can only be distinguished from *E*. (*E*.) corneolum by a somewhat low HAA_R/L (11). Since only two specimens are available it seems unwise to regard them as specifically distinct. Likewise it seems improper to separate *E*. leachi MCLEARN on the basis of a somewhat low H/UA (12) when all other proportions of the figured specimen are similar to those of typical representatives of *E*. (*E*.) corneolum. Metric proportions of 'P.' (*E*.) valauryense LANQUINE (13) from the Bathonian of Provence, are entirely within the range of *E*. (*E*.) corneolum.

GOLDFUSS (1836) apparently based his concept of 'P.' cingulatus on a specimen from the Oxfordian figured by PHILLIPS (1829, pl. 5, fig. 11) as 'P.' sp. The latter possesses a slight byssal notch and may be a late representative of E. (E.) lunare (q. v.). However additional figures of 'P.' cingulatus provided by GOLDFUSS show no sign of a byssal notch and are not dissimilar to E. (E.) corneolum. What may be regarded as paratypes in the GPIB (610a, 610b) could certainly be taken to be representatives of E. (E.) corneolum. However, comarginal ornament is quite strongly developed (Pl. 1, Figs. 20, 22) and this, together with the fact that the example figured in Pl. 1, Fig. 22 has a smooth opposite valve, suggests that the specimens may possibly be representative of E. (E.) orbiculare (cf. Pl. 1, Fig. 19). GOLDFUSS cited localities in both the L. and U. Jurassic for his species, thus his hypodigm could well have included E. (E.) lunare in addition to one or other of E. (E.) corneolum and E. (E.) orbiculare. However, D'ORBIGNY (1850) subsequently created 'P.' Philenor and 'P.' Proeteus for L. Jurassic forms which he would otherwise have assigned

Text fig. 35: Entolium (E.) corneolum - height of anterior auricle on right valve/length.

to 'P.' cingulatus and, following STAESCHE (1926), Cox (1952, 1965) has taken this to imply a restriction of GOLDFUSS' hypodigm to U. Jurassic forms. It should be noted in passing that DECHASEAUX (1936) and TROEDSSON (1951) have applied GOLDFUSS' specific name to L. and M. Liassic forms of E. (Entolium) which are, in consequence of the horizon of derivation, very probably representative of E. (E.) lunare. Examples of E. (Entolium) from U. Jurassic marls in S. Germany, whence some of GOLDEUSS' paratypes were derived, appear to be distinguishable from E. (E.) corneolum (the E. (Entolium) species usually encountered elsewhere at this time) by a low UA. However, text fig. 32, in which these specimens are identified with a double glyph, shows that this is an illusion created by small size. Nevertheless, certain specimens collected by WELLNHOFFR (1964) from marls in the U. Jurassic of S. Germany probably differ from E. (E.) corneolum in the possession of internal ridges (see p. 36) and it could be that GOLDFUSS' paratypes are similarly distinct. The affinities of GOLDFUSS' species are thus extremely uncertain and while it seems likely that most authors would apply the name cingulatus to specimens referable to E. (E.) corneolum there remains the possibility for U. Jurassic forms that GOLD-FUSS' specific name could be applied to E. (E.) orbiculare or to the probably separate species with internal ridges. Specimens figured by RAVN (1910) and Cox (1965) appear similar to WELLNHOFER's material while specimens referred to E. cingulatum by STAESCHE (1926), apparently with strong comarginal ornament, may be representative of E. (E.) orbiculare. However, unillustrated U. Jurassic specimens referred to GOLDFUSS' species by ROLLIER (1911), BEHMEI (1970), WENDT (1971) and NITZOPOULOS (1974) are of completely indeterminate affinities. Since neither the 'species' with internal ridges nor E. (E.) orbiculare are known definitely to occur before the U. Jurassic, unillustrated M. Jurassic records of GOLD-FUSS' species in TERQUEM and JOURDY (1869), BOTTO-MICCA (1893) and BARBULESCU (1961, 1971), together with GRECO's (1898) poorly illustrated record, can be ascribed with some confidence to E. (E.) corneolum. The specimen (GP1T 4-74-10; Pl. 1, Fig. 11) figured by QUENSTEDT (1852) as 'Pecten' cingulatus (accorded the name 'P.' cornutus by QUENS. TEDT in 1858) has extremely extended auricles on the right valve and in this respect resembles Propeamussium (P.) laeviradiatum (see however p. 29). It is possible (see p. 41) that some of the specimens referred to D'ORBIGNY's (1850) replacement specific name ('P.' Proeteus) for Toarcian 'P.' cingulatus may belong to E. (E.) corneolum and WENDT's (1971) record from the Aalenian and Bajocian of Sicily almost certainly refers to the latter species.

'P.' Renevier: OPPEL was erected for an unfigured specimen from the Bajocian of S. Germany said to generally resemble 'P.' cingulatus but to differ by stronger comarginal ornament. The density of the latter (12 per half inch) is probably too high to suggest that 'P.' Renevieri is an exceptionally early representative of E. (E.) orbiculare and a specimen (GP1T) from the same stage and region, referred to OPPEL's species by STAESCHE (1926), appears to be a form of E. (E.) corneolum in which growth has been periodically halted, resulting in a regular arrangement of strong growth lines.

'P.' Phillipsii VOLTZ proposed, like 'P.' cingulatus GOLD-IUSS, for 'P.' sp. PHILLIPS and applied to unfigured Bathonian specimens from E. France, is almost certainly referable to E. (E.) corneolum. It should be noted that VOLTZ'S species (published in 1833) becomes a senior objective synonym of GOLD-FUSS' species if the latter is taken to include the original of 'P.' sp. PHILLIPS (see above). It should be further noted that following the ambiguous statement in GOLDFUSS many authors (e. g. QUENSTEDT, 1852; TERQUEM and JOURDY, 1869; GRECO, 1898) have incorrectly ascribed the authorship of 'P.' cingulatus to PHILLIPS (1829).

In the interests of brevity unfigured secondary records of synonymous and probably synonymous species which are of no relevance to Sections 4-10 are excluded from the synonymy. They may be found in the following works: for 'P.' corneolus, CHANNON (1950); for 'P.' demissus, BEAN (1839), QUENSTEDT (1843), D'ORBIGNY (1850), V. SEEBACH (1864), SCHLIPPF (1888), PARIS and RICHARDSON (1916), ROMAN (1926), BARBULESCU (1971); for 'P.' disciformis, v. BUCH (1839), Oppel (1858), v. Seebach (1864), Waagen (1867), DENINGER (1907), LANQUINE (1929), BARBULESCU (1961); for 'P.' vitreus, DE LORIOL (1894, 1901, 1904), SOKOLOV and BODYLEVSKY (1931); for 'P.' solidus, D'ORBIGNY (1850), AR-KFII (1926); for 'P.' spathulatus, TERQUEM and JOURDY (1869), BARBULESCU (1971); for 'P.' silenus, FURSICH (1971); for 'P.' Gingensis, DENINGER (1907), LANQUINE (1929); for 'P.' Renevieri, Rollier (1911), FURSICH (1971); for 'P.' Nicoleti, SIEMIRADZKI (1893); for 'P.' Valauryense, DE CHASEAUX (1936).

5. STRATIGRAPHIC RANGE

The earliest records of E. (E.) corneolum are provided by six specimens (GPIG) from the Toarcian of Esch, Luxembourg which lack a byssal notch, have high H/UA ratios and exhibit the large auricles (Pl. 1, Fig. 25) typical of the species. From the ironstone matrix it is reasonable to conclude that the specimens are derived from the U. Toarcian strata in the area. A specimen (GPIG) from the same horizon at Heiningen, S. Germany has the ovate form more characteristic of E. (E.) corneolum than E. (E.) lunare while two specimens from the U. Toarcian of Somerset (BM L42004, L74597) and a further specimen from undifferentiated Toarcian in Warwickshire (BM 66789) have the high H/UA ratios typical of E. (E.) corneolum. A number of poorly preserved specimens from undifferentiated Lias in S. America (GPIG) have a narrow form highly reminiscent of E. (E.) corneolum. Specimens from the Toarcian which have poorly preserved auricles and which therefore cannot confidently be assigned to a species are prefixed by a question mark in text fig. 32. Bibliographic records from the Toarcian of species which are considered herein to be synonymous with E. (E.) corneolum are all equivocal (see Section 4). However, it is perhaps worth noting that DUMOR-TIER'S (1869) and BEHMEL and GEYER'S (1966) citations are of specimens from the Bifrons Zone (L. Toarcian).

E. (E.) corneolum becomes common and locally abundant in the Aalenian and continues thus until the uppermost Jurassic (TRAUTSCHOLD, 1862; DE LORIOL and PELLAT, 1875; YIN, 1931; ?KILIAN and GUÉBHARD, 1905). Specimens from the U. Volgian of Moscow (GPIG; BORISSIAK and IVANOFF, 1917) probably indicate that *E. (E.) corneolum* survived into the Cretaceous.

Text fig. 36: Entolium (E.) corneolum - European distribution.

6. GEOGRAPHIC RANGE

Unequivocal Toarcian records of E. (E.) corneolum are restricted to Europe (text fig. 36) and the same may also be true in the Aalenian; WANDEL'S (1936) record from that stage in the E. Indies being of an unfigured specimen which was merely compared with PHILLIPS's synonym ('P.' demissus) of E. (E.) corneolum. Subsequently the species spread to many parts of the world resulting, by the U. Jurassic, in a palaeolatitudinal range approaching 100° (text fig. 37). Outside Europe E. (E.) corneolum is, however, only known to be common in the Bajocian of the Andes (TORNQUIST, 1898) and the Oxfordian/L. Kimmeridgian of E. Greenland (SPATH, 1935) and the species is notably absent from the U.S. Western Interior where the reduced diversity fauna, in which Camptonectes is the only common pectinid, is suggestive of high environmental stress (HALLAM, 1975a). MCLEARN'S (1924) record of common specimens from undifferentiated Jurassic in Alberta may well be from the Callovian, bearing in mind FREBOLD's (1957) use of MCLEARN's synonym (*E. leachi*) of *E. (E.) corneolum* for specimens from that stage.

7. DESCRIPTION OF ECOLOGY

E. (*E.*) corneolum first occurs commonly in the chamosite oolites of the Northampton Sand Ironstone (Aalenian; Opalinum zone) where it reaches a maximum height of 53 mm (author's collection) and is associated with a diverse bivalve fauna (see p. 26) including *Propeamussium* (*P.*) pumilum but lacking *P.* (*P.*) laeviradiatum. In a similar sedimentary and faunal association in the Murchisonae zone of S. Germany *E.* (*E.*) corneolum is abundant and reaches a maximum height of 58 mm (GPIT) while in the Aalenian of Lorraine the species is common in chamosite oolites of the Opalinum zone and reaches a maximum height of 90 mm (NM) in ironshot sediments probably of the Concavum zone. *E.* (*E.*) corneolum occurs in a variety of limestones (including

Text fig. 37: Entolium (E.) corneolum - World distribution (Callovian reconstruction).

those bearing corals [CHANNON, 1950]) in the Aalenian of the Cotswolds (reaching a maximum height of 49 mm [OUM J34471]) and near Yeovil it occurs commonly in ironshot oolites. In similar sediments in Provence *E. (E.) corneolum* reaches a maximum height of 74 mm (LANQUINE, 1929).

In the L. Bajocian of S. Germany *E*. (*E*.) corneolum attains a maximum height of 40.5 mm (GPIT) and is particularly abundant in the Blaukalke, a sandy limestone (STAESCHE, 1926). Specimens from the Sowerbyi-Banke which are referable to the possibly synonymous species '*P*.' Gingensis QUEN-STEDT (see Section 4) attain a maximum height of 87 mm (GPIT) but specimens which are definitely referable to *E*. (*E*.) corneolum attain a maximum height of 90 mm (YM 531) in the contemporaneous Millepore Bed, a sideritic sandstone in Yorkshire (fauna p. 123). Only one specimen (GPIG) is known from the relatively restricted fauna (indicative of lower environmental stability) in the somewhat later Scarborough Beds of the same area. In the L. Bajocian of E. France *E*. (*E*.) corneolum occurs quite frequently in inter-reef biosparites and biomicrites (HALLAM, 1975 b).

In the U. Bajocian of S. Germany the species is reported to be abundant (STAESCHE, 1926) and reaches a maximum height of 41 mm (GPIT). It is also common in condensed ironshot oolites in Normandy while contemporaneous specimens from limestones in the Cotswolds are common and attain a maximum height of 71 mm (BM LL15). The species is reported to be common in Bajocian dolomitised oolites in the Maritime Alps (KILIAN and GUUEBHARD, 1905).

Records of common L. Bathonian specimens of *E. (E.)* corneolum are restricted to the Mâconnais (LISSAJOUS, 1923) and the species is not known to be common again until the uppermost Bathonian (Discus zone) when it is found in the shell fragment limestones of the L. Cornbrash in England (fauna p. 128), attaining a maximum height of 55 mm (OUM J7135). All the specimens cited by Cox and ARKELL (1948) from the marginal marine facies of the Bathonian in central England appear to be representatives of *Camptonectes* (M. J. BRADSHAW, pers. comm., 1977) and the majority of Bathonian records of *E. (E.) corneolum* are in fact concentrated in central and southern Europe (text figs. 36, 37).

In the L. Callovian (Macrocephalus zone) E. (E.) corneolum is abundant in the chamosite oolith-bearing limestones of the U. Cornbrash in Yorkshire and attains a maximum height of 55 mm (SbM H 73.4). In the immediately overlying Shales of the Cornbrash the species is reported to be abundant (J. WRIGHT, 1977) but all specimens discovered by the author have been small (H: < 30). In the same area similar specimens (Hmax: 36.5; BM 47433) are fairly common in the low diversity benthic fauna (see p. 208) of sandstones forming the Kellaways Rock (Calloviense zone) and chamosite oolites forming the Hackness Rock (U. Callovian; Athleta and Lamberti zones) both of which were probably deposited very near shore (J. WRIGHT, 1978). Small specimens also occur in the more basinal non-bituminous shales of the L. and M. Callovian in E. Scotland and U. Callovian of E. England (DUFF, 1978). However, in the predominantly bituminous shales of the L. and M. Callovian in the latter area E. (E.) corneolum is not only small but is restricted to a subordinate role in shell beds which contain, in comparison to contiguous deposits, a relatively high proportion of suspension feeding bivalves (DUFF, 1975). KILIAN and GUÉBHARD (1905) report the species as common in thin-bedded limestones containing numerous suspension feeding bivalves in the Callovian of S. France while LEWINSKI (1908) reports common examples in marls of the same age in Poland.

ROFDER (1882) reports common E. (E.) corneolum in the L. Oxfordian 'Terrain à Chailles' of Alsace (fauna pp. 88, 208) and PERON'S (1905) record of common Oxfordian specimens from the same area may well be from this horizon rather than the coral-bearing limestones of the U. Oxfordian. However, the latter facies seems to support fairly common E. (E.) corneolum in the Swiss Jura (DE LORIOL, 1893) where the species reaches a maximum height of 77 mm (DE LORIOL, 1895). Similar sediments in the Oxfordian of N. Germany (ROEMER, 1836) and England (ARKELL, 1930a; BROOKFIELD, 1978) also contain E. (E.) corneolum up to a maximum height of 80 mm (YM 560). However the species is not particularly common, forming no part of the trophic nuclei of any of FURSICH's (1977) faunal associations, and according to ARKELL (1928) it is largely restricted to inter-reef biosparites. Specimens from Oxfordian marls and biomicrites in S. Germany reach a maximum height of only 21 mm (GPIT) but if NITZOPOULOS' (1974) information is taken to refer to E. (E.) corneolum (see Section 4) the species is fairly common in an otherwise sparse benthic fauna. In similar sediments in the Kimmeridgian of the same area E. (E.) corneolum attains a maximum height of 28.5 mm (GPIT) but here, as in other occurrences in the stage, there is no evidence of anything more than a few specimens although the species is widespread (text fig. 36). An isolated specimen from unknown facies in Russia has a height of 45 mm (BM L4170). E. (E.) corneolum is absent from Oxfordian sands in Normandy, (CHAVAN, 1952), together with Kimmeridgian marls in N. W. Germany (HUCKRIEDE, 1967) and limestones in Poland (ALTH, 1882) where the presence of euryhaline bivalve genera and paucity of ammonites is suggestive of abnormal salinities. By contrast, in the L. Tithonian ammonite-bearing marly limestones of the last area E. (E.) corneolum is very common (LEWINSKI, 1923). In the M. Tithonian (Pectinatus zone) near Oxford E. (E.) corneolum is also very common, reaching a maximum height of 57 mm (OUM [14519). Many specimens have somewhat low H/UA ratios as in the co-occurring Camptonectes (C.) auritus. E. (E.) corneolum occurs with E. (E.) orbiculare in the U. Jurassic of Moscow (GPIG) and Spitzbergen (SOKOLOV and BODYLEVSKY, 1931).

The wide variety of sediments in which *E. (E.) corneolum* is found in large numbers, of which all known European examples are described above, is also occupied by somewhat fewer individuals at many other horizons in the M. and U. Jurassic. However, the low diversity faunas of basinal argillaceous sediments in the peri-Mediterranean region do not appear to contain *E. (E.) corneolum* except possibly in the U. Jurassic of E. Spain where BEHMEL (1970) records as the most common fossil the questionably synonymous species *E. cingulatum* (see Section 4). All other records from the region are either from faunally rich neritic facies or from somewhat reduced diversity, condensed, fine-grained swell facies where the species seems to be small in size (e. g. BOTTO-MICCA, 1893).

8. INTERPRETATION OF ECOLOGY

If assessed in terms of its abundance it is clear from Section 7 that E. (E.) corneolum was a remarkably eurytopic species with respect to substrate. Certain clay-grade sequences where the low density and diversity of other suspension feeding bivalves is indicative of high turbidity or soupy substrates seem to have constituted the only unfavourable environments and even these E. (E.) corneolum may have been able to colonise in large numbers locally. However, if assessed in terms of its size it is clear that expanded sequences of argillaceous sediments did not provide the most suitable substrates for *E*. (E.) corneolum, individuals from such facies being always smaller than those from contemporaneous deposits of arenaceous grade. In the latter the large size of specimens from sequences where the precipitation of siderite and chamosite is indicative of slow sedimentation suggests that the development of firm substrates and low turbidity was conducive to rapid growth and the attainment of large size. Further support for the importance of the last factor is provided by the occurrence of large specimens in arenaceous sediments close to coral reefs, the growth of which is inhibited by high turbidity. The high environmental energy associated with arenaceous sedimentation was, by the evidence of the reduced size of specimens from expanded compared to contemporaneous condensed sequences, apparently insufficient on its own to promote rapid growth. In fact, the relatively reduced H/UA of specimens from an expanded sand sequence in the M. Tithonian suggests that growth was actively retarded in such sequences. In the lack of any M. Tithonian occurrences of E. (E.) corneolum from condensed facies, it is impossible to rule out the possibility that the H/UA decrease is a phyletic effect (see Section 10). However, the parallel change in the ecologically distinct but co-occurring Camptonectes (C.) auritus argues strongly for stunting. The relative abundance of medium to small specimens in this and other expanded arenaceous and argillaceous sequences need not be viewed as evidence against stunting (see p. 124 and HALLAM, 1965).

In contrast to its considerable substrate eurytopy E. (E.) corneolum seems to have been unable to tolerate environments where the low faunal diversity is indicative of abnormal salinity or the more general instability of marginal marine situations. Sequences which were largely deposited under conditions of reduced oxygen tension were only colonised, and then rarely, at horizons where the development of shell beds suggests a brief replacement of stagnant by more acitve and oxygenated conditions.

There is no evidence for any competitive reaction with the morphologically very similar species E. (E.) orbiculare, nor with Propeamussium (P.) pumilum and P. (P.) nonarium. However E. (E.) corneolum is very rarely found with P. (P.) laeviradiatum despite the favourability for the former species of the condensed facies to which the latter is restricted. It seems likely that a similar mode of life (see Section 9) may have led to mutual competitive exclusion.

Very close Recent morphological analogues of E. (E.) corneolum are described on p. 45).

9. FUNCTIONAL MORPHOLOGY

Apart from the absence of a byssal notch E. (E.) corneolum is in all relevant aspects of morphology identical to E. (E.) lu-

nare. A similar mode of life, differing only by the lack of a byssate juvenile phase, can therefore be inferred (see p. 45). *E. (E.) corneolum* has a lower rate of increase in umbonal angle so swimming ability may have been somewhat impaired at large sizes. The small maximum size of individuals colonising soft argillaceous substrates is adaptive in that it minimises sinking into the substrate. Stunting, with its implication of inadaptiveness, may therefore be an inappropriate term to apply to the development of small size in such environments (see Section 8).

10. ORIGINS AND EVOLUTION

E. (*E.*) lunare is the only known candidate for the ancestor of *E.* (*E.*) corneolum in the Jurassic. All the differences displayed by the latter species can be explained by the heterochronic alteration of the ontogeny of the former. However, simultaneous retardation (for H/L, I_R/L , HAA/L and AH/L) and acceleration (for H/UA and the lack of a byssal notch) of the development of the components of shape with respect to size would have to be invoked and it is by no means certain whether such a situation could arise in a single speciation event. It may be that an as yet undetected species is the direct ancestor of *E.* (*E.*) corneolum.

The undoubted existence of ecophenotypic variation in size and the lack of adequate collections from any one facies throughout the stratigraphic range of E. (E.) corneolum makes for great difficulty in assessing phyletic changes in size. Specimens lumped together from all arenaceous facies exhibit an overall, albeit oscillatory, decrease in size from 90 mm (Aalenian) to 90 mm (L. Bajocian) to 71 mm (U. Bajocian) to 55 mm (U. Bathonian) to 55 mm (L. Callovian) to 80 mm (Oxfordian) to 57 mm (M. Tithonian) and this is corroborated, for at least part of the stratigraphic range, by a consistent reduction in size in condensed arenaceous facies from the Aalenian to the L. Bajocian to the L. Callovian (values as above). The reduced H/UA observed in some M. Tithonian specimens may not extend to other populations and so cannot definitely be considered as a phyletic effect, especially in the light of a plaubsible alternative explanation in terms of reduced growth rate (see Section 8).

Entolium (Entolium) orbiculare (J. SOWERBY 1817) Pl. 1, Fig. 19; text figs. 38–42

Synonymy

- 1817 Pecten orbicularis sp. nov; J. SOWERBY, p. 193, pl. 86.
- ? 1829 Pecten sp; PHILLIPS, pl. 5, fig. 11.
- pv? 1836 Pecten cingulatus sp. nov; GOLDFUSS, p. 74, pl. 99, figs. 3a, 3b.
 - ? 1837 Pecten concentricus sp. nov; KOCH and DUNKER, p. 43, pl. 5, fig. 8.
- v"? 1840b Pecten partitus sp. nov; J. DE C. SOWERBY, p. 328, pl. 22, figs. 5, 5a.
 - 1843 Pecten nummularis sp. nov; G. FISCHER, p. 135, pl. 5, fig. 4.
- (?) 1850 Pecten partitus J. DE C. SOWERBY, D'ORBIGNY, v. 1, p. 342.
 - 1850 Pecten nummulans G. FISCHER; D'ORBIGNY, v. 1, p. 373.

v non 1852	Pecten angulatus GOLDFUSS; QUENSTEDT, p. 506,
non 1864	pl. 40, fig. 41. Pecten concentricus KOCH and DUNKER: V. SEE.
1000 1000 J	влсн, р. 100.
? 1866	Pecten demissus PHILLIPS; LINDSTROM, p. 14, pl. 3, figs. 9, 10 (non PHILLIPS sp.).
non 1869	Pecten cingulatus GOLDFUSS; TERQUEM and JOURDY, p. 127.
? 1874	Pecten polylasmites sp. nov; GFMMFLLARO and DI BLASI, p. 137, pl. 3, fig. 18.
? 1876	Pecten Pilatensis sp. nov; FAVRE, p. 65, pl. 7, fig. 3.
? 1881	Pecten vitreus ROEMER; DF LORIOL, p. 93, pl. 13, figs. 3–5 (non ROEMER sp.).
? 1883	Pecten demissus PHILLIPS; LUNDGREN, p. 16, pl. 2, fig. 12 (non PHILLIPS sp.).
(?) 1885	Pecten (Amusium) Pilatensis FAVRE; NICOLIS and

PARONA, p. 45.

Pecten concentricus KOCH and DUNKER; non 1891 BLHRENDSEN, p. 416. ? 1893 Pecten (Entolium) theodosianus sp. nov; RET-

- OWSKI, p. 283, pl. 14, fig. 23.
- 1893 Pecten (Entolum) erraticus sp. nov; FIEBELKORN, p. 400, pl. 14, fig. 12.
- Pecten (Entolum) cingulatus GOLDFUSS; BOTTOnon 1893 MICCA, p. 174.
- ? 1895 Pecten Stewartianus sp. nov; LUNDGREN, p. 198, pl. 3, fig. 12.
- Pecten (Entolium) cingulatus GOLDFUSS; GRECO, non 1898 p. 109, pl. 8, figs. 30, 31.
 - 1908 Pecten (Entolium) gothicus sp. nov; KRAUSE, p. 256, pl. 4, figs. 6, 7
 - ? 1910 Pecten (Entolium) cingulatus GOLDFUSS; RAVN, p. 464, pl. 33, fig. 7.
 - 1910 Pecten erraticus FIFBELKORN; RAVN, p. 464.
 - 2 1911 Pecten (Entolium) cingulatus GOLDFUSS; ROL LIFR, p. 263.
 - ? ±912 Chlamys (Syncyclonema) Briconensis COSSMANN; Cossmann, p. 3, pl. 1, fig. 20.
 - Pecten vitreus ROFMER, BORISSIAK and IVANOFF, ? 1917 p. 8, pl. 1, fig. 4 (non figs. 1, 2, 12, 16; non ROEMFR sp.).
 - ? 1923 Syncyclonema masticonense sp. nov: LISSAJOUS, p. 166, pl. 30, fig. 6.
 - ? 1926 Entolium cingulatum (GOLDFUSS); STAESCHE, p. 93, pl. 4, figs. 3, 4.
 - ? 1926 Entolium aff. solido (ROEMER); STAESCHE, p. 103, pl. 3, figs. 13-15 (non ROFMER sp.).
 - Pecten (Entolium) nummularis G. FISCHER; 1931 SOKOLOV and BODYLEVSKY, p. 51, pl. 8, fig. 1.
- non 1936 Entolium cingulatus (GOIDFUSS); DECHASEAUX, p. 60.
- (?) 1936 Entolium masticonense (LISSAJOUS); DECHAS-FAUX, p. 63.
- 1936 Entolum nummularis (G. FISCHER); SPATH, p. 103, pl. 41, figs. 9, 10a-c, pl. 42, figs. 11a, 11b. Entolium cingulatum (GOLDI-USS); TROEDSSON, non 1951
 - p. 217, pl. 20, figs. 1-3, pl. 21, figs. 11, 12.
- 2 1952 Entolium partitum (J. DE C. SOWERBY); COX, p. 35, pl. 3, figs. 11-13.
- Entolum cingulatum (GOLDFUSS); BARBULESCU, non 1961 p. 702.
- Entolum cingulatum (GOLDFUSS); WELLNHOFER, non 1964 p. 35, pl. 1, figs. 28-30.
- ? 1965 Entolium briconense (COSSMANN); COX, p. 51, pl. 6, fig. 6.
- 2 1965 Entolium cingulatum (GOLDFUSS); COX, p. 52, pl. 6, fig. 5.
- 1966 Entolium nummulare (G. FISCHER); ZAKHAROV, p. 35, pl. 5, fig. 3, pl. 6, figs. 2-6.
- ? 1970 Entolium cingulatum (GOLDFUSS); BFHMEL, p. 62. 1971 Entolium (Entolium) orbiculare (J. SOWERBY); DHONDT, p. 8, pl. 1, figst 1a, 1b.

- non 1971 Entolium cingulatum (GOLDFUSS); BARBULESCU, p. 277.
 - ? 1971 Entolium cf. cingulatum (GOLDFUSS); WENDT, p. 160.
 - ? 1972 Entolium sp. aff. partitum (J. DE C. SOWERBY); HAYAMI, p. 199, pl. 34, fig. 9.
 - 1974 Entolium nummulare (G. FISCHER); ZAKHAROV and MESEZNIKOV, p. 140.
 - ? 1974 Entolium cingulatum (GOLDFUSS); NITZOPOU-LOS, p. 46.
 - ±977 Entolium (Entolium) orbiculare (J. SOWERBY); KELLY, p. 66, pl. 4, figs. 1-10.
 - ? 1978 Entolium sp. A; DUFF, p. 64, pl. 5, figs. 7-10, 12, 13, 17.

The holotype (M) of Pecten orbicularis J. SOWERBY 1817, p. 193, pl. 86 has not been located in the SOWERBY Collection at the BM and is probably lost. It was derived from the U. Greensand (Albian) of Devizes, Wiltshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Orbicular, much depressed, concentrically striated; striae elevated, sharp; one valve smooth; ears nearly equal, broadest at the base.

A thin tender shell; the striae are many, a line distant from each other; the length and breadth are equal; the ears rather large.

One of the tender products of the green sand of the Devizes canal, preserved by Mrs. GENT. It appears to be infrequent, as I have seen but one individual.'

2. AMENDED DIAGNOSIS

Distinguished from E. (E.) corneolum and E. (E.) lunare by the presence of regular comarginal grooves on the right valve.

Text fig. 38: Entolium (E.) orbiculare - height/length.

3. AMENDED DESCRIPTION

Essentially very similar to *E*. (*E*.) corncolum. Differing only by the diagnostic comarginal grooves (see Section 2) which are situated at intervals of between 1 and 4 mm (KELLY, 1977), by the smaller maximum height (54 mm; IGS R. 27/06) and by the somewhat lower mean H/L, H/UA and 1/L (text figs. 38–40).

Text fig. 39: Entolium (E.) orbiculare – intersinal distance/length.

4. DISCUSSION

The earliest specific name erected for the species described in Section 3, 'Pecten' orbicularis J. SOWERBY, was founded on a Cretaceous specimen and most subsequent records of J. SOWERBY's species have been from that period. For synonymy lists of Cretaceous *E.* (*E.*) orbiculare and synonymous species, reference should be made to D_{HONDT} (1971) and K_{ELLY} (1977).

The figure of 'P.' nummularis G. FISCHER depicts a shell which lacks the comarginal grooves diagnostic of E. (E.) orbicularc. However, the description specifies such ornament thus the figure probably illustrates the smooth left valve of the latter species. Only Jurassic records of G. FISCHER'S species are included in the synonymy. Cretaceous records may be traced through DHONDT (1971) and KELLY (1977). It should be noted that some subsequent authors (e. g. D'ORBIGNY, 1850; ZAKHAROV, 1966) have attributed 'P.' nummularis incorrectly to PHILLIPS while SOKOLOV and BODYLEVSKY (1931) have attributed the name to D'ORBIGNY.

The figure of 'P.' concentricus KOCH and DUNKER, from the Kimmeridgian/Tithonian of N. Germany, depicts a specimen lacking a byssal notch and with strong comarginal ornament as in E. (E.) orbicularc. However, H/L and H/UA (1) are extremely high and although this could be due to bad drawing, the fact that v. SEEBACH (1864) and BEHRENDSEN (1891), both of whom may well have examined the type material, have attributed specimens with radial ornament to 'P.' concentricus, suggests that KOCH and DUNKER's figure is more probably of a left valve of Camptonectes (Camptochlamys) obscurus.

J. de C. SOWFRBY's (1840b) figures of 'P.' partitus from the probable Callovian (Cox, 1952) of Cutch (India) reveal quite strong comarginal ornament, as in the right valve of E. (E.) orbiculare. However, the syntypes (BM R. 9960) do not exhibit such ornament and although one has I/L (2) within the range of E. (E.) orbiculare they are too poorly preserved to be specifically determinate. Cox (1952) has figured topotype specimens which show comarginal grooves similar in form to those of E. (E.) orbiculare but the apparent lack of smooth valves suggests that they comprise both right and left valves of a species which, unlike E. (E.) orbiculare, is comarginally ornamented on both valves (cf. 'Syncyclonema' masticonense

Text fig. 40: Entolium (E.) orbiculare - height/umbonal angle.

below). HAYAMI'S (1972) record of a form from the Toarcian of Vietnam having affinities with J. de C. SOWFRBY's species is based on a specimen which is too poorly preserved to be specifically determinate.

'P.' polylasmites GEMMFLLARO and DI BLASI from the Tithonian of Sicily was founded on two specimens with regular comarginal ornament and no byssal notch. Both were said to be left valves but if this is the case the figure indicates that PH must be greater than AH, a situation unknown in other pectinids. It seems much more likely that the specimens are right valves which are thus very similar in ornament to the corresponding valve of *E. (E.) orbiculare*. Metric proportions (3) are indistinguishable.

'P.' (E.) theodosianus RETOWSKI from the Tithonian of the Crimea is reported to be known only from left values thus the strong comarginal ornament of the figured specimen cannot indicate any relationship with E. (E.) orbiculare. However, since RETOWSKI states that a byssal notch is absent in his species right values must have been available and it is thus possible that the comarginal ornament is limited to these specimens as in E. (E.) orbiculare. Nevertheless, H/UA (4) of the figure is somewhat low for the latter species.

'P.'(E.) crraticus FIEBELKORN and 'P.'(E.) gothicus KRAUSE from the German Kimmeridgian both have the comarginally grooved right valve of E. (E.) orbiculare. 1/L (5) of the figure of the former is somewhat high but this could be due to inaccurate reproduction. H/L and H/UA are indistinguishable from E. (E.) orbiculare.

The figure of 'Chlamys' ('Syncyclonema') Briconensis COSSMANN; COSSMANN (1912) from the Callovian of France reveals strong comarginal ornament, as in the right valve of *E*. (*E.*) orbiculare, but the description specifies unequal auricles, which may serve to differentiate the species. Unfortunately the degree of auricle asymmetry cannot be assessed because of the poor preservation of the figured specimen. Cox's (1965) record of COSSMANN's species from the same horizon in E. Africa is based on a similarly poorly preserved specimen. Coss-MANN's original description and figure (1907c) has proved impossible to trace. The auricles of 'S.' masticonense Lissajous, a species from the U. Bajocian and L. Bathonian of France which was compared with Cossmann's species, are somewhat better preserved and seem to be entolioid in form. The comarginal ornament of the right valve is indistinguishable from that of *E. (E.) orbiculare* but that of the left valve, said to consist of lamellose comarginal striae, may serve to differentiate the species.

The questionably synonymous species 'P.' cingulatus GOLDFUSS (and secondary references thereto) is discussed under E. (E.) corneolum.

The remaining questionable references listed in synonymy are discussed under *E. (E.) corneolum* (for FAVRE, 1876; DE LORIOL, 1881; STAESCHE, 1926) and *E. (E.) lunare* (for PHIL-LIPS, 1829; LINDSTROM, 1866; LUNDGREN, 1883, 1895; BORIS-SIAK and IVANOFF, 1917; DUFF, 1978).

5. STRATIGRAPHIC RANGE

KELLY (1977) states that specimens from the Kimmeridgian (e. g. IGS Y1624, Y1625; GPIG; MNR; FIEBELKORN, 1893; KRAUSE, 1908; SOKOLOV and BODYLEVSKY, 1931; ZAKHAROV, 1966, 1974) constitute the earliest records of E. (E.) orbiculare. In fact, SOKOLOV and BODYLEVSKY (1931) record the species from the Oxfordian of Spitzbergen, D'ORBIGNY (1850) records it from the Oxfordian of various localities in France and Russia and univalved comarginally grooved museum specimens from the same stage in England (BM L66462), Germany (GP1G) and France (MNS) probably constitute further records of the species. Bibliographic records in Phil-LIPS (1829), FAVRE (1866), NICOLIS and PARONA (1885), ROL-LIER (1911), STAESCHE (1926), BEHMFL (1970), WENDT (1971) and NITZOPOULOS (1974) may also refer to Oxfordian examples of E. (E.) orbiculare (see Section 4). Earlier records (in the Callovian: J. de C. Sowerby, 1840; d'Orbigny, 1850; Cossmann, 1912; Cox, 1952, 1965; DUFF, 1978; in the Bajocian and Bathonian: LISSAJOUS, 1923; DECHASEAUX, 1936; in the Toarcian: HAYAMI, 1972) are restricted to questionably

Text fig. 41: Entolium (E.) orbiculare - European distribution.

Text fig. 42: Entolium (E.) orbiculare - World distribution (Tithonian reconstruction).

synonymous species and until pre-Oxfordian bivalved specimens with smooth left valves and comarginally ornamented right valves are discovered it is probably best to say that the first appearance of *E. (E.) orbiculare* is in the U. Jurassic. It is possible that another species with comarginal grooves on both valves may have existed in the M. Jurassic (see Section 4).

In the Oxfordian and Kimmeridgian E. (E.) orbiculare is only known to be common in Spitzbergen (SOKOLOV and BODYLEVSKY, 1931). Subsequently in the Jurassic it is not known to be common anywhere. KELLY (1977) reports the species as abundant in the M. Volgian (\simeq M. Tithonian) to Ryazanian (Cretaceous) of E. England and DHONDT (1971) states that E. (E.) orbiculare is known until the Turonian.

6. GEOGRAPHIC RANGE

The distribution of *E. (E.) orbiculare* in the Jurassic is distinctly Boreal with no certain records south of a palaeolatitude of about 25°N (text figs. 41, 42).

7. DESCRIPTION OF ECOLOGY

In Spitzbergen, SOKOLOV and BODYLEVSKY (1931) record common *E. (E.) orbiculare* in association with *E. (E.) corneolum* in U. Oxfordian to L. Kimmeridgian black shales. In E. Greenland SPATH (1936) records *E. (E.) orbiculare* with a height of 42.5 mm from U. Tithonian ('Portlandian') glauconite sands and similar sediments are probably the source of a number of specimens from the L. Volgian (\simeq L. Tithonian) of the Moscow area where *E. (E.) corneolum* also occurs. According to KELLY (1977) the same sedimentary facies is dominated by *E. (E.) orbiculare* in the Spilsby and Sandringham Sands (M. Volgian to Ryazanian) of E. England. Current aligned specimens in the stable, convex up, position constitute between 51 and 57% of the total fauna. In the remainder, the deep burrowing bivalves *Pleuromya* and *Pholadomya* are quite common elements. In finer grained sands whose fauna contains a higher proportion of byssate and cemented bivalves indicating deposition under lower energy conditions, *E. (E.) orbiculare* constitutes only 28% of the total fauna. The maximum height attained in the sequence is 55 mm (IGS R27/06).

8. INTERPRETATION OF ECOLOGY

The variations in abundance of E. (E.) orbiculare in the Spilsby and Sandringham Sands suggest that the species favoured high energy environments. However, the relatively greater abundance in coarse, high energy sands could merely be due to post-mortem winnowing out of small elements of the fauna to leave concentrations of E. (E.) orbiculare in such sediments. By adopting a view that the species was, in fact, eurytopic with respect to environmental energy the otherwise anomalous occurrence of E. (E.) orbiculare in black shales in Spitzbergen is reasonably explained.

There is no evidence of any competitive reaction between *E*. (*E*.) orbiculare and *E*. (*E*.) corneolum.

9. FUNCTIONAL MORPHOLOGY

Since E. (E.) orbiculare is in all important aspects of morphology identical to E. (E.) corneolum a similar reclining/swimming mode of life can be inferred. The development of pronounced comarginal ornament on the right valve exterior represents, at least in the high energy environments occupied by the species (see Section 8), an improved adaptation for reclining since it increases purchase on the substrate and thereby promotes stability.

10. ORIGINS AND EVOLUTION

The most obvious ancestor for *E*. (*E*.) orbiculare is *E*. (*E*.) corneolum. However, it should be borne in mind that a second species, morphologically very similar to *E*. (*E*.) orbiculare, may have existed in the M. Jurassic (see Section 4) and

been a more direct ancestor of E. (*E.*) orbiculare. Except for H/L, the slight differences in the metric proportions of *E*. (*E.*) orbiculare in comparison with *E*. (*E.*) corneolum (see Section 3) cannot be explained by heterochrony as the latter species displays little allometry in the relevant features.

The available data on maximum height (42.5 mm: 'Portlandian', 54 mm: M. Volgian-Ryazanian) is not sufficiently localised in a stratigraphic sense to allow any assessment of possible phyletic changes.

Genus PSEUDOPECTEN BAYLE 1878

Type species. M; BAYLI 1878, pl. 21, fig. 1; Pecten equivalvis J. Sowerby 1816, p. 83, pl. 136, fig. 1; U. Pliens-bachian, Avallon, E. Paris Basin.

AMENDED DIAGNOSIS

Nearly equivalve to clearly inequivalve; between 12 and 27 radial plicae which are nearly smooth or with spines on RV. L. Jur.–M. Jur., Eu., N. and S. Am., E. Indies.

DISCUSSION

In his diagnosis HERTLEIN (1969: N372) stated that *Pseudopecten* was nearly equivalve; *Ps. (Echinopecten) barbatus* is, however, distinctly inequivalve. HERTLEIN stated that about 15 or 16 plicae were present; text fig. 43 shows that there is at least a range between 12 and 27 plicae. HERTLEIN excluded N. America from the geographic range; the latter continent can now be included on the basis of the results of work presented herein.

Subgenus PSEUDOPECTEN s. s.

AMENDED DIAGNOSIS

Plicae on right valve smooth or some with spines; nearly equivalve. L. Jur.-M. Jur. (Hettang.-Bajoc.), Eu., N. Afr., N. and S. Am.

DISCUSSION

HFRTLEIN (1969: N372) omitted any reference to convexity in his diagnosis, which consequently does not exclude *Ps. (Echinopecten).* He erroneously limited the stratigraphic range to Sinemurian – Domerian and the geographic range to Europe.

Within Ps. (Pseudopecten) two groups may be distinguished by the presence or absence of high, vertically striated disc flanks and comarginal striae which tongue down the sulci. Forms possessing these features usually have between 16 and 20 plicae (text fig. 43). However 2 specimens with 13 plicae are known to possess these features and it seems extremely likely that forms with between 12 and 15 plicae, most of which are poorly preserved, also possessed them originally. This group has a bimodal plical frequency distribution with peaks at 14 and 17/18 plicae. Such a distribution is herein considered to be indicative of two species named, respectively, Ps. (Ps.) veyrasensis and Ps. (Ps.) dentatus. However, the possibility cannot be entirely discounted that it is indicative of a single polymorphic species. Apart from the number of plicae, forms with between 12 and 15 plicae are virtually indistinguishable from those with between 16 and 20 plicae. However, in spite of close ecological similarities the two groups are not congruent stratigraphically (see pp. 79, 75) and this is most easily interpreted as the result of a specific difference in the absence of more positive proof for polymorphism.

Text fig. 43: Pseudopecten (Pseudopecten) - frequency distribution for number of plicae.

Forms without high, vertically striated disc flanks and comarginal striae which tongue down the sulci have between 16 and 27 plicae (mode 22) and are herein referred to *Ps. (Ps.) equivalvis.* Differences in size, umbonal angle and angularity of the plicae in forms referred to this species can be confidently ascribed to ontogenetic and ecophenotypic variation (see pp. 64, 71).

Pseudopecten (Pseudopecten) equivalvis (J. SOWERBY 1816) Pl. 2, Figs. 1, 2, 4–10, ?Fig. 3; text figs. 44–58

Synonymy

- v 1816 Pecten equivalvis sp. nov; J. SOWERBY, p. 83, pl. 136, fig. 1.
- 1819 Pecten acuticosta sp. nov; LAMARCK, p. 180.
- ? 1820 Pectinites priscus sp. nov; SCHLOTHEIM, p. 222.
- 1828 Pecten sublaevis sp. nov; YOUNG and BIRD, p. 234, pl. 9, figs. 9, 10.
- 1828 Pecten major sp. nov; YOUNG and BIRD, p. 235.
- 1833 Pecten acuticostatus LAMARCK; V. ZIETEN, p. 70, pl. 53, figs. 6a, 6b.
- 1833 Pecten aequivalvis J. SOWERBY; V. ZIETEN, p. 68, pl. 52, figs. 4a, 4b.
- 1833 Pecten costatulus sp. nov; HARTMANN in V. ZIE-TEN, p. 68, pl. 52, figs. 3a, 3b.
- v 1833 Pecten aequivalvis J. SOWERBY; GOLDFUSS, p. 43, pl. 89, fig. 4.
- v non 1833 Pecten priscus SCHLOTHEIM; GOLDFUSS, p. 43, pl. 89, fig. 5.
 - v 1833 Pecten acutiradiatus sp. nov; MUNSTER in GOLD-FUSS, p. 44, pl. 89, figs. 6a–c.
 - 1836 Pecten aequivalvis J. SOWERBY; ROEMER, p. 67.
 1836 Pecten acuticosta sp. nov; ROEMER, p. 68.
 - 1030 Petter denteosid sp. nov, ROEMER, p. 08.
 - ? 1838 Pecten lugdunensis sp. nov; MICHELIN in LEY-MERIE, pl. 24, fig. 5.
 - v 1850 Pecten aequivalvis J. SOWERBY; D'ORBIGNY, v. 1, p. 237.
 - v 1850 Pecten priscus Schlotheim; d'Orbigny, v. 1, p. 238.
 - v 1850 Pecten cepbus sp. nov; D'ORBIGNY, v. 1, p. 238.
 - v 1850 Pecten acuticosta LAMARCK; D'ORBIGNY, v. 1, p. 257.
 - 1850 Pecten acutivadiatus MUNSTER; D'ORBIGNY, v. 1, p. 257.
 - 1851 Pecten acutiradiatus MUNSTER; SCHAFHAUTL, p. 410.
 - 1852 Pecten acuticosta LAMARCK; VERNEUIL and COL-LOMB, p. 112.
 - 1852 Pecten aequivalvis J. SOWERBY; BRONN, p. 208, pl. 19, fig. 4.
 - 1852 Pecten priscus SCHLOTHEIM; QUENSTEDT, p. 507, pl. 40, fig. 42.
 - 1853 Pecten acuticosta LAMARCK; CHAPUIS and DEWAL-QUE, p. 211, pl. 31, figs. 3a-c.
 - 1853 Pecten aequivalvis J. SOWERBY; CHAPUIS and DE WALQUE, p. 212, pl. 32, fig. 1.
 - 1853 Pecten aequivalvis J. SOWFRBY; OPPEL, p. 77, pl. 4, fig. 11.
 - 1853 Pecten priscus SCHLOTHEIM; OPPEL, p. 78, pl. 4, fig. 10.
 - 1858 Pecten aequivalvis J. SOWERBY; OPPEL, p. 181.
 - 1858 *Pecten sublaevis* YOUNG and BIRD; OPPEL, p. 181. 1858 *Pecten priscus* SCHLOTHEIM: OPPEL, p. 181.
 - 1858 Pecten priscus SCHLOTHEIM; OPPEL, p. 181. v 1858 Pecten aegualis sp. nov; QUENSTEDT, p. 78, pl. 9,
 - fig. 13. 1858 Pecten aequivalvis J. SOWERBY; QUENSTEDT,
 - p. 183, pl. 23, fig. 1. 1860 Pecten aequivalvis J. SOWERBY; COQUAND, p. 62.
 - 1863 Pecten priscus SCHLOTHEIM; SCHLÖNBACH, p. 542.

- 1865 Pecten aequalis QUENSTEDT; TERQUEM and PIETTE, p. 102, pl. 12, figs. 15–19.
- 1867 Pecten acutiradiatus MUNSTER; DUMORTIER, pp. 72, 217, pl. 48, figs. 5, 6.
- non 1867 Pecten priscus SCHLOTHEIM; DUMORTIER, p. 216, pl. 48, fig. 4.
 - 1869 Pecten acutiradiatus MUNSTER; DUMORTIER, p. 135, pl. 21, fig. 8.
 - 1869 Pecten acuticostatus LAMARCK; DUMORTIER, p. 136, pl. 21, fig. 7, p. 305, pl. 39, fig. 3.
 - 1869 Pecten priscus SCHLOTHEIM; DUMORTIER, p. 138, pl. 22, fig. 3.
 - 1869 Pecten aequivalvis J. SOWERBY; DUMORTIER, p. 298, pl. 42, figs. 16, 17.
 - 1871 Pecten priscus SCHLOTHEIM; BRAUNS, p. 390.
 - 1871 Pecten aequivalvis J. SOWERBY; BRAUNS, p. 391.
 - 1872 Pecten aequivalvis J. SOWERBY; TIETZE, p. 106.
 - 1872 Pecten Hinterhuberi sp. nov; TIETZE, p. 107, pl. 3, fig. 4.
 - 1876 Pecten aequalis QUENSTEDT; TATE and BLAKE, p. 363.
 - 1876 Pecten acquivalvis J. SOWERBY; TATE and BLAKE, p. 363.
 - 1876 Pecten priscus SCHLOTHEIM; TATE and BLAKE, p. 364.
 - 1878 Pseudopecten aequivalvis (J. SOWERBY); BAYLE, pl. 121, fig. 1.
 - 1881 Pecten Caracolensis sp. nov; STEINMANN, p. 254, pl. 14, fig. 10.
 - 1884 Pecten acuticostatus LAMARCK; UHLIG, p. 179.
 - 1884 Pecten cf. aequivalvis J. SOWERBY; UHLIG, p. 179.
 - 1884 Pecten major YOUNG and BIRD; SIMPSON, p. 165.
 1884 Pecten sublaevis YOUNG and BIRD; SIMPSON,
 - p. 165.
 - 1884 Pecten interstinctus sp. nov; SIMPSON, p. 169.
 - 1884 Pecten rudis sp. nov; SIMPSON, p. 169.
 - 1884 Pecten dichotomus sp. nov; SIMPSON, p. 169.
 - 1886 Pecten aequivalvis J. SOWERBY; WINKLER, p. 30.
 1888 Pecten priscus SCHLOTHEIM; MOBERG, p. 34, pl. 1, fig. 26.
 - ? 1890 Pecten Norigliensis sp. nov; TAUSCH, p. 13, pl. 7, fig. 8.
 - ? 1891 Pecten Bodenbenders sp. nov; BEHRENDSEN, p. 391, pl. 22, fig. 3.
 - ? 1895 Pecten Johnstrup: sp. nov; LUNDGREN, p. 199, pl. 3, figs. 13a, 13b.
 - *1897 Pecten priscus* SCHLOTHEIM; POMPECKJ, pp. 773, 776.
 - 1897 Pecten aequivalvis J. SOWERBY; POMPECKJ, pp. 776, 779.
 - 1897 Pecten acuticosta LAMARCK; POMPECKJ, p. 776.
 - 1903 Pecten aequalis QUENSTEDT; BISTRAM, p. 37, pl. 3, figs. 4, 5.
 - 1909 Pecten (Chlamys) priscus SCHLOTHEIM; TRAUTH, p. 92.
 - 1910 Chlamys aequivalvis (J. SOWERBY); LISSAJOUS, p. 352, pl. 10, fig. 2.
 - 1916 Pecten priscus SCHLOTHEIM; JAWORSKI, p. 417.
 - 1916 *Chlamys (Aequipecten) prisca* (SCHLOTHEIM); Cossmann, p. 47, pl. 5, fig. 16.
 - ? 1920 Pecten zigoplocus DI BLASI; FUCINI, p. 89, pl. 5, figs. 13, 14.
 - 1924 *Chlamys mcconnelli* sp. nov; MCLEARN, p. 46, pl. 5, figs. 1, 9.
 - 1925 Pecten acutiradiatus MÜNSTER; DUBAR, p. 259.
 - 1925 Pecten acuticosta LAMARCK; DUBAR, pp. 275, 282.
 - 1925 Pseudopecten aequivalvis (J. SOWERBY); DUBAR, p. 277.
 - 1926 Aequipecten priscus (SCHLOTHEIM); STAESCHE, p. 48.
 - 1926 Aequipecten acuticosta (LAMARCK); STAESCHE, p. 50, pl. 6, figs. 1, 2.

- 1926 Aequipecten aequivalvis (J. SOWERBY); STAESCHE, p. 51.
- 1926 Chlamys aequivalvis (J. SOWERBY); ROMAN, p. 113.
- 1929 Pecten (Pseudopecten) acuticosta LAMARCK; LAN-QUINE, p. 130.
- 1929 Pecten (Pseudopecten) priscus SCHLOTHEIM; LAN-QUINE, p. 131.
- 1932 Pecten (Aequipecten) acquivalvis J. SOWERBY; TZANKOV and BONCEV, p. 231.
- 1935 Chlamys sendelbachensis sp. nov; KUHN, p. 470, pl. 18, tig. 32.
- 1936 Aequipecten priscus (SCHLOTHFIM); KUHN, p. 248, pl. 9, fig. 6.
- 1936 Aequipecten acuticosta (LAMARCK); KUHN, p. 248, pl. 12, fig. 46.
- 1936 Aequipecten aequivalvis (J. SOWERBY); KUHN, p. 248, pl. 10, fig. 19, pl. 13, fig. 24.
- 1936 Aequipecten maximiliani sp. nov; KUHN, p. 249, pl. 11, figs. 3a, 3b.
- 1936 *Pseudopecten achticosta* (LAMARCK); DECHAS-FAUX, p. 59.
- 1936 Pseudopecten aequivalvis (J. SOWERBY); DECHAS-EAUX, p. 59.
- 1936 Aequipecten priscus (SCHLOTHEIM); DECHAS-EAUN, p. 42.
- 1936 Aequipecten acutiradiatus (MUNSTER); DECHAS-EAUX, p. 42.
- 1942 Aequipecten bierringi sp. nov; ROSENKRANTZ, p. 26.
- non 1948 Pecten (Acquipecten) nongliensis TAUSCH; DU-BAR, p. 163, pl. 13, fig. 12.
 - 1951 Pecten aequivalvis J. SOWERBY; TROEDSSON, p. 219.
 - 1965 Pecten priscus SCHLOTHEIM; DAHM, pp. 27-29.
 - 1965 Pecten cl. acutiradiatus MUNSTER; DAHM, p. 27.
 - 1965 Pseudopecten aequivalvis (J. SOWERBY); DAHM, p. 28.
 - 1965 Chlamys acuticostata (LAMARCK); MENSINK, p. 77.
 - 1965 Pecten aequivalvis J. SOWERBY; MENSINK, p. 78.
 - 1966 Aequipecten priscus (SCHLOTHEIM); BEHMEL and GEYER, p. 28.
 - 1966a Pseudopecten prisca (SCHLOTHEIM); C. PALMER, p. 67.
 - 1966b *Pseudopecten equivalvis* (J. SOWERBY); C. PALM-ER, p. 72.
 - 1966b *Pseudopecten prisca* (SCHLOTHEIM); C. PALMER, p. 72.
 - 1967 Pseudopecten priscus (SCHLOTHEIM); BERRIDGE and IVIMEY-COOK, p. 160.
 - 1972 Pseudopecten aequivalvis (J. SOWERBY); HALLAM, p. 408.

Lectotype of *Pecten equivalvis* J. SOWFRBY 1816, p. 83, pl. 136, fig. 1 designated herein; BM L79783; Pl. 2, Fig. 1 herein; H: 79, L: 85, I₁: 48, UA: 128; M. Lias (U. Pliensbachian), Ilminster, Somerset.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Lenticular with rounded diverging ribs and many acute concentric striae; valves equally convex the lower one smoothest; ears equal.

The ribs vary in proportion; they sometimes equal the space between them, but are generally less; they are rounded

and the striae are more or less obliterated over them: the spaces between them are slightly concave.

Pectens are generically described by LAMARCK as inequivalve, wherefore, 1 suppose, he had not seen any otherwise; but the present species has both valves nearly if not quite, equally gibbous; one valve being simply convex, the other having a trifling reversed undulation near the edge, and differing but little in the pattern. The auricles have not, as I have seen, been found perfect, they are, however, nearly so, and they then show an horizontal line on each side of the beak, with nearly perpendicular lineae or striae. I have one by favour of Dr. SUTTON, which has nearly parallel lines with the hinge on the dexter auricle of the broader valve, with the broad costae. This species is commonly found from three to seven inches in diameter. Mr. STRANGEWAYES, from whom I have received several specimens, observes that they are characteristic of the coarse limestone of Ilminster. I have had other specimens from near Lackington, by favour of Mr. STRANGEWAYFS, also from Farley gateway, Gloucestershire; Carrington, Oxfordshire; and from Dursley, Gloucestershire. I believe the species is found in various other parts of England, and I have a specimen from France.'

2. AMENDED DIAGNOSIS

Distinguished from *Ps. (Ps.) dentatus* and *Ps. (Ps.) veyra*sensis by the low disc flanks and curvilinear comarginal striae.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long in juvenile, growing allometrically to become longer than high (text fig. 44) towards maximum height of 179 mm (BM 2662). Umbonal angle increasing at a decreasing rate (text fig. 45) to produce concave dorsal margins. Disc flanks low.

Equilateral, moderately convex, left valve slightly more convex than right.

Intersinal distance greater in left valve than right but increasing at a slightly increasing rate in both valves (text figs. 46, 47). Large byssal notch in right valve becoming relatively smaller during ontogeny (text fig. 48).

Auricles well demarcated from disc, moderate in size, anterior slightly larger than posterior. Both anterior and posterior hinge lengths increasing at an increasing rate (text figs. 50, 51). Anterior auricle height increasing at a decreasing rate (text fig. 49). All auricles meeting hinge line at approximately 90°. Anterior auricle of right valve meeting disc at approximately 90°, other auricles meeting disc at an acute angle. All auricles ornamented with comarginal striae, anterior auricles also bearing 2–3 fine radial costae.

Both valves ornamented with between 16 and 27, most commonly 22, radial plicae (text fig. 52). Plicae angular and often wider than sulci in juveniles but becoming more rounded and narrower than sulci later in ontogeny (Pl. 1, Fig. 8). Plicae poorly defined at anterior dorsal and posterior dorsal margins of juveniles. Both plicae and sulci bearing fine radial striae and crossed by closely spaced curvilinear comarginal striae.

Shell thickness generally moderate but high beneath plicae.

Text fig. 45: Pseudopecten (Ps.) equivalvis - height/umbonal angle.

4. DISCUSSION

'Pecten' acuticosta LAMARCK only differs from 'P.' equivalvis SOWERBY (lectotype [herein designated]; BM L79783; Pl. 2, Fig. 1; 1) by the angularity of the plicae. There can be little doubt that this is the result of a lower degree of abrasion (see Section 8) and it cannot therefore be the basis for a specific distinction. Most large specimens with angular plicae which are referred to 'P.' acuticosta are derived from low energy condensed deposits and also have relatively low umbonal angles for their heights. However, this appears to be an ecophenotypic feature brought about by relatively fast growth in such facies (see Section 8).

Pectimites' priscus SCHLOTHEIM was erected for a single specimen from the Sinemurian exhibiting few diagnostic features. Subsequent authors have frequently applied the specific name to small specimens of *Ps. (Pseudopecten)* and have

maintained a specific distinction from larger specimens (= 'P.' aequivalvis auctt.) on the basis of a lower umbonal angle and reduced number of plicae, which tend also to be acute. Notwithstanding the fact that the holotype (M) of 'Pt.' priscus (HM) is reported to be an abnormally large specimen (H: 80, Dr. J. HELMS, pers. comm., 1977) for its stratigraphic horizon, three further criteria indicate that 'P.' priscus auctt. should be included within Ps. (Ps.) equivalvis.

a. Umbonal angle and the number of fully developed plicae both increase during ontogeny (see Section 3) thus small immature specimens of *Ps. (Ps.) equivalvis* have low umbonal angles and appear to have few plicae.

b. Mature specimens from argillaceous facies may exhibit the above characteristics because they are small as a result of stunting (see Section 8).

Text fig. 46: Pseudopecten (Ps.) equivalvis - intersinal distance on left valve/length.

Text fig. 47: Pseudopecten (Ps.) equivalvis - intersinal distance on right valve/length.

c. Mature specimens from low horizons in the stratigraphic range of *Ps. (Ps.) equivalvis* may exhibit the above characteristics because they are small as a consequence of representing an early stage in phyletic evolution towards increased maximum size (see Section 10).

It is very doubtful whether any of the records of 'P.' priscus cited in synonymy represent anything other than one of the above categories of small Ps. (Ps.) equivalvis.

'P.' sublaevis YOUNG and BIRD was separated from 'P.' equivalvis on the basis of its low plicae, lacking in comarginal striae. As discussed above, this is almost certainly due to abrasion. 'P.' major YOUNG and BIRD appears to represent, by contrast, an unusually well preserved specimen of Ps. (Ps.) equivalvis which still exhibits radial striae on the plicae.

SIMPSON'S (1884) species 'P.' *interstinctus*, 'P.' *rudis* and 'P.' *dichtomus* were all compared with 'P.' *priscus* and although figures were not provided it seems highly likely that the species represent small specimens of *Ps.* (*Ps.*) *equivalvis*.

The single observed type of 'P.' aequalis QUENSTEDT (GPIT 4-9-13; Pl. 2. Fig. 5) has 22 plicae and is inseparable from *Ps.* (*Ps.*) equivalvis by metric criteria (2). Likewise, one of the syntypes of 'P.' cepbus D'ORBIGNY (MNO 1842 C) has 17 plicae and is inseparable by metric criteria (3) while another (Pl. 2, Fig. 10) has 21 plicae and exhibits no distinguishing features.

KUHN'S (1935) holotype (M) for 'Chlamys' sendelbachensis (BSPHG 1934 IV 8; Pl. 2, Fig. 4) has 20 plicae and metric proportions (4) within the range of Ps. (Ps.) equivalvis. His type material for 'Aequipecten' maximiliani appears to be lost but the diagnostic criteria, three more plicae than is usual in Ps. (Ps.) equivalvis (22) and reduced plical height, can both be accommodated within the known range of 'genetic' and 'environmental' variation in the latter species.

The figure of 'P.' costatulus HARTMANN exhibits 17–18 plicae and H/UA (5) which is indistinguishable from *Ps.* (*Ps.*)

equivalvis. Similarly '*Ch.*' *mcconnelli* MCLEARN has 22 plicae and the description gives no grounds for considering the species as anything other than synonymous with *Ps. (Ps.) equivalvis*.

MUNSTER'S (1833) figure of 'P.' acutiradiatus shows a specimen with an exceptionally large umbonal angle (125 at H: 13.5) and small auricles. However, examination of the figured specimen (BSPHG AS VII 611; Pl. 2, Fig. 9) shows this to be due to a draughting error. The auricles are in fact broken and the H/UA ratio (6) is well within the range of Ps. (Ps.) equivalvis.

'P.' Hinterhuberi TIETZE was erected for a very large specimen (H: 152) said to differ from 'P.' equivalvis by its smaller umbonal angle. However, the figure depicts a broken specimen which could not have provided an accurate value for UA. In all other respects it is identical to Ps. (Ps.) equivalvis. The specimen was derived from a loose boulder thus the reported age (Hettangian, Angulata zone) may well be inaccurate. The apparently abnormal size for the stratigraphic horizon (see Section 10) may therefore be spurious.

'P.' Caracolensis STEINMANN was erected for a specimen possessing 24 smooth low plicae and characterised by one large median plica. This last feature is fairly common in *Ps.* (*Ps.*) equivalvis and is probably caused by the interruption of normal growth by damage. The species are inseparable by metric criteria (7).

The figure of 'P.' lugdunensis MICHELIN reveals a specimen with 25 plicae and metric proportions (8) which are inseparable from Ps. (Ps.) equivalvis. The four auricular costae may however be distinctive and subsequent authors who may have examined the type material (e. g. STAESCHE, 1926) have synonymised MICHELIN's species with Ch. (Ch.) valoniensis (q. v.). The preservation of 'P.' lugdunensis as an internal mould may preclude recognition of the intercalary costae characteristic of Ch. (Ch.) valoniensis.

Text fig. 48: Pseudopecten (Ps.) equivalvis - depth of byssal notch/length.

Text fig. 49: Pseudopecten (Ps.) equivalvis - height of anterior auricle/length.

The figure of 'P.' Norigliensis TAUSCH depicts a specimen with 19 plicae and H/UA, I_R/L and AH/L (9) just within the range of Ps. (Ps.) equivalvis. PH/L and, in particular, N/L are distinctly high. However, this could simply be due to inaccurate illustration and the single specimen recorded provides few grounds for a specific separation. DUBAR (1948), who may have examined the holotype (M), has applied TAUSCH's specific name to forms which are clearly conspecific with Ps. (Ps.) dentatus (q. v.). The description and figures of 'P.' Bodenbendern BEHRENDSEN from Argentina are clearly indicative of the genus Weyla. However specimens in the GPIG, including what is apparently a type, clearly belong to the genus *Pseudopecten*. Notwithstanding this nomenclatural confusion it seems unwise at present to include the rather poorly preserved Göttingen specimens within *Ps. (Ps.) equivalvis* since they appear to differ from the latter by their greater convexity and smaller umbonal angle.

Text fig. 50: Pseudopecten (Ps.) equivalvis - anterior hinge length/length.

The figure of the left valve of 'P.' Johnstrupi LUNDGREN closely resembles Ps. (Ps.) equivalvis in the number of plicae (20–25) and in H/UA, AH/L and PH/L (10). However, I_L/L and the umbonal angle of the right valve (70–80°) are low and may justify a separation, although the drawing could be inaccurate. The same may be true of 'P.' Zigoplocus DI BLASI; FU-CINI whose figure depicts a specimen with 22 plicae and H/UA (11) within the range of Ps. (Ps.) equivalvis but with an abnormally large I/L. DI BLASI'S original description has proved impossible to trace. 'Aequipecten' bierringi from the L. Pliensbachian of Greenland was not figured or described by ROSENKRANTZ (1942). However it was said to closely resemble 'A.' aequivalvis and it seems extremely likely that it is synonymous with J. SOWFRBY's species.

'P.' acuticosta ROFMER is clearly a junior primary homonym of LAMARCK's species and as such should be rejected. The description leaves little doubt that ROFMER's hypodigm fell within the range of variation in *Ps. (Ps.) equivalvis.*

Text fig. 51: Pseudopecten (Ps.) equivalvis - posterior hinge length/length.

'P.' priscus SCHLOTHEIM; DUMORTIER has the down-sulcal tongueing of the growth lines typical of *Ps. (Ps.) dentatus* rather than *Ps. (Ps.) equivalvis.* 'P.' acutiradiatus MUNSTER; DUMORTIER is referable to the former species on the basis of the vertically striated disc flanks.

The great majority of authors have followed J. DE C. SOW-ERBY's alteration of the spelling of *equivalvis* to *aequivalvis* in vol. 6 of the 'Mineral Conchology' (1829). This is incorrect since J. SOWERBY's original spelling in no way contravenes the ICZN rules and therefore must take historical precedence. However. *Ps. (Ps.) equivalvis* remains something of a misnomer because the shell is noticeably inequivalve.

5. STRATIGRAPHIC RANGE

Ps. (Ps.) equivalvis is first recorded in the Planorbis zone (Hettangian) of Lyme Regis (BM L62437), Dijon (DM 134), Lugano (BISTRAM, 1903) and Yorkshire (TATE and BLAKE, 1876). Subsequently it is recorded from the Angulata zone of E. France (TERQUEM and PIETTE, 1865) and the Bavarian Alps (WINKLER, 1886) and the Bucklandi zone (L. Sinemurian) of Lyme Regis (BM L77272), the Rhone (DUMORTIER, 1867) and S. Bavaria (SCHAFHAUTL, 1851). *Ps. (Ps.) equivalvis* first occurs commonly in the middle Sinemurian Frodingham Ironstone (Semicostatum-Obtusum zones) and from then on it is widespread and often abundant until the U. Pliensbachian.

Text fig. 52: Pseudopecten (Ps.) equivalvis - frequency distribution for number of plicae.

Extension of the range into the Tenuicostatum zone of the L. Toarcian is evidenced by material from the Cotswolds (OUM J33417-8) and Luxembourg (BSPHG). Most other Toarcian records (e. g. BM LL8142-3 from Lincolnshire, MNO 2073, 2073A-D; MNR B8689; MNP S00963 from N. France) are probably from this zone. However, HALLAM (1972) considered that the range extended into the middle Toarcian in Iberia and this horizon may be the source of some of the numerous Toarcian records from the area (e. g. BM LL30836; DAHM, 1965; DUBAR, 1925; VERNEUIL and COL-LOMB, 1852). The species is recorded with Hildoceras bifrons in the W. Balkans (POMPECKJ, 1897) and YOUNG and BIRD (1828) report material from hard bands in the Alum Shale (Bifrons zone) of Yorkshire. In the latter area intensive field work by the author has failed to substantiate YOUNG and BIRD's claim. However, collecting from the Oolithe Ferrugineuse at Port-en-Bessin (Normandy) has brought to light a specimen (Pl. 2, Fig. 3) which may be a Bajocian representative of Ps. (Ps.) equivalvis. In the lack of further material and with the poor preservation of the available specimen the possibility still remains that it should more properly be referred to *Ctenostreon*.

Collecting at Snowshill Quarry, Gloucestershire has failed to substantiate AGER et al.'s (1973) record of *Pseudopecten* from the M. Bathonian of this locality. *Radulopecten vagans* and *Camptonectes (C.) laminatus* are the only pectinids present.

6. GEOGRAPHIC RANGE

Ps. (Ps.) equivalvis is found in all parts of Europe and there seem to be no obvious changes in distribution throughout its stratigraphic range (text fig. 53). There is thus no support for STAFSCHE's (1926) view that small specimens (= 'Aequipecten' priscus) originated in the Hettangian of the Rhone and subsequently spread to other parts of Europe in the Sinemurian.

Contrary to STAESCHE's opinion, *Ps. (Ps.) equivalvis* is not known throughout the world at any time. Records outside Europe are restricted to the Americas (text fig. 54) and the

Text fig. 53: Pseudopecten (Ps.) equivalvis - European distribution.

Text fig. 54: Pseudopecten (Ps.) equivalvis - World distribution (Pliensbachian reconstruction).

species is only known to be common in E. Greenland (ROSENKRANTZ, 1934, 1942). It is probably rare in S. America, JAWORSKI (1916) having recorded only two specimens and STEINMANN (1881) a mere one, from Bolivia. It is by no means certain that the large number of fragments of *Ps. (Pseudopecten)* from S. America in the GPIG necessarily belong to *Ps. (Ps.) equivalvis* (see Section 4).

With regard to its range outside Europe, HALLAM (1977) has suggested that the rarity of *Pseudopecten* at least in the W. Americas, may be due to competition with the ecologically similar aberrant pectinid *Weyla*. However, the absence of both *Weyla* and *Pseudopecten* from Asia, Australia and Antarctica remains to be explained.

The observed distribution of *Ps. (Ps.) equivalvis* is most obviously explained by migration via the Canadian Arctic. However, there is now some evidence (see p. 25) to suggest that in the Pliensbachian a seaway existed between S. America, S. Africa and Antarctica (or perhaps between N. and S. America) and this could have afforded an alternative routeway.

7. DESCRIPTION OF ECOLOGY

Ps. (*Ps.*) equivalvis first occurs commonly in the Frodingham Ironstone (Semicostatum-Obtusum zones), a stratigraphically condensed chamosite oolite in Lincolnshire. *Entolium (E.) lunare* is however a considerably more abundant element of the fauna, which also includes *Camptonectes (C.) subulatus, Chlamys (Ch.) textoria, 'Lima', Gryphaea, Astarte* and large *Cardinia* and ammonites. Most specimens of *Ps. (Ps.) equivalvis* are disarticulated and have, except in the umbonal region, rounded plicae (Pl. 2, Fig. 6). The maximum height attained is 45 mm (ScM). Contemporaneous specimens from more expanded, lower energy sequences such as the micritic limestones of S. Germany, reach only 25 mm in height while those from marls reach only 10 mm and are much less common (STAESCHE, 1926). All specimens from argillaceous facies have acute plicae and the limited available data suggests that they also have relatively large umbonal angles for their heights, compared to specimens from ironstones of the same age (text fig. 56). The associated fauna in the argillaceous facies is relatively deficient in *E. (E.) lunare* and large *Cardinia*.

L. Pliensbachian chamositic ironstone deposits such as the 'Pecten' Bed (Ibex zone) of Lincolnshire, contain abundant *Ps. (Ps.) equivalvis* up to a maximum height of 90 mm (author's collection). All specimens are disarticulated and rest convex up, suggesting strong current activity. This is supported by the essentially unimodal size/frequency distribution obtained from a two sq. m. bedding-plane exposure (text fig. 55). Except in the region of the umbo, the plicae are rounded. Other faunal elements are less prominent than in the Frodingham Ironstone.

A high proportion of articulated specimens is indicative of lower energy conditions in the 'Pecten' Bed (Ibex zone) of Blockley, Gloucestershire. The abundance of fish vertebrae and the siderite cement (HEWITT and HURST, 1977) suggests a period of non-deposition. Ps. (Ps.) equivalvis attains a height (H: 78; OUM J17929) comparable to that in specimens de-

Text fig. 55: *Pseudopecten (Ps.) equivalvis* – frequency distribution for shell height in specimens collected from a 2 sq. m. bedding-plane exposure in the '*Pecten*' Bed (Ibex zone) of Lincolnshire.

Text fig. 56: *Pseudopecten (Ps.) equivalvis* - height/umbonal angle for specimens from condensed and expanded sequences in the Sinemurian.

rived from contemporaneous high energy condensed deposits (see above) but the plicae remain, in contrast, angular at all ontogenetic stages (Pl. 2, Fig. 7). The associated fauna is deficient in *E. (E.) lunare* and is dominated by large specimens of *Astarte* and *Mactromya*. A variety of less common in- and epifaunal bivalves, gastropods and cephalopds attain a large size at this horizon (HEWITT and HURST, 1977).

In contemporaneous low energy expanded sequences such as the Numismalis Mergel (Jamesoni/Ibex zones) of S. Germany, *Ps. (Ps.) equivalvis* is common but reaches a maximum height of only 37.5 mm (GPIT). In L. Pliensbachian clays in the English Midlands the maximum height is 27.5 mm (OUM J33290). All specimens have acute plicae. Larger specimens are occasionally recorded from predominantly clay sequences but these invariably turn out to be from storm lags at the top of small coarsening upward cycles (SELLWOOD, 1972). Thus specimens with rounded plicae reaching a maximum height of 60 mm (author's collection) occur in deposits of the Jamesoni zone at Robin Hood's Bay (Yorkshire) in association with *Camptonectes* (C.) *subulatus, Plicatula, Gryphaea, Gervillella* and exhumed *Pinna*.

In addition to their reduced maximum size, L. Pliensbachian specimens of *Ps. (Ps.) equivalvis* from uncondensed argillaceous facies also tend to have relatively large umbonal angles for their heights (text fig. 57). The few specimens that plot within the range of forms from condensed facies are almost certainly derived from thin, coarse grained horizons within predominantly clay sequences (see above).

Text fig. 57: *Pseudopecten (Ps.) equivalvis* – height/umbonal angle for specimens from condensed and expanded sequences in the L. Pliensbachian.

Ps. (Ps.) equivalvis is also common in the L. Pliensbachian of E. Greenland, where it occurs in coarse sands and limestones (ROSENKRANTZ, 1934, 1942), Raasay, where it is abundant in muddy sands (author's collection), and E. Spain, where it is found in bioclastic limestones (BEHMEL and GEYER, 1966). It is however conspicuous by its absence from the Jamesoni zone of the Pyrences where condensed deposits contain common *Ps. (Ps.) dentatus* and the first European representatives of *Weyla* (DAMBORENEA and MANCENIDO, 1979).

In the Sandy Series (Margaritatus zone) of the U. Pliensbachian in Yorkshire, Ps. (Ps.) equivalvis is common and reaches a maximum height of about 60 mm, while in the similarly expanded sequence of Raasay a maximum height of 70 mm is attained (author's collection). All specimens have rounded plicae. The associated fauna is dominated by Oxytoma, Protocardia, Gryphaea and the scaphopod Dentalum. E. (E.) lunare is rare but in a similar sedimentary and faunal association in the later parts of the Margaritatus zone in Dorset (Thorncombe Sands) it is common and Ps. (Ps.) equivalvis is rare. C. PALMER (1966b) remarked on the small size of specimens from a sandy limestone bed (Day's Shell Bed) at the top of the clay sequence (Eype Clay) representing the earlier parts of the Margaritatus zone in Dorset. They were said to reach only 25-30% of their 'normal' height. However, PALMER may have been drawing a comparison with specimens from Spinatum zone ironstones (see below) rather

than with those from Margaritatus zone clays whose maximum height (30 mm; author's collection) is very probably *less* than that of PALMER's specimens. *Ps. (Ps.) equivalvis* is not known to be common in argillaceous facies anywhere in the U. Pliensbachian.

Ps. (Ps.) equivalvis is very common in the condensed, high energy, chamositic ironstones of the Spinatum zone in Lorraine, N. W. Germany and most parts of England. All specimens have rounded plicae (Pl. 2, Fig. 1) and the maximum height reached is 179 mm (BM 2662). The associated fauna is essentially the same as for the Margaritatus zone although in Northamptonshire, Oxfordshire and Somerset, where *Ps. (Ps.) equivalvis* is somewhat less common, *Ps. (Ps.) dentatus* and *Ps. (Ps.) veyrasensis* also occur. In S. Germany, the Spinatum zone is developed in a condensed but lower energy marlstone facies in which *Ps. (Ps.) equivalvis* usually exhibits acute plicae (STAESCHF, 1926) and attains a maximum height of 95 mm (GPIT). There are too few specimens available from uncondensed argillaceous facies to allow of any comparison in shape with forms from condensed or higher energy facies.

Ps. (Ps.) equivalvis is nowhere common after the U. Pliensbachian and over most of Europe its disappearance is correlated with the onset of bituminous shale deposition in the L. Toarcian. In parts of the W. Balkans and Iberian peninsula where the Toarcian is developed in high energy facies the species extends into the Bifrons zone (see Section 5). However, in similar facies in the Toarcian of E. Greenland (ROSENKRANTZ, 1934, 1942) and the Caucasus (POMPECKJ, 1897) the species seems to be absent. The largest Toarcian specimens are apparently to be found in the D'OR-BIGNY Collection (H_{max} : 92; MNO 2073B). However, D'OR-BIGNY's concept of the Toarcian may also have included parts of the U. Pliensbachian, so such records should be treated with caution.

Although quite widespread in the peri-Mediterranean region, *Ps. (Ps.) equivalvis* appears to reach large sizes only in high energy deposits such as the U. Pliensbachian calcarenites of the Iberian ranges (MENSINK, 1965), the sandy marls of the W. Balkans (POMPECKJ, 1897), the sandstones of Yugoslavia (UHLIG, 1884) and W. Bulgaria (TZANKOV and BONCEV, 1932) and the Toarcian marly oolites of the W. Balkans (POM-PECKJ, 1897).

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that *Ps. (Ps.) equivalvis* was a eurytopic species with respect to substrate, only clays formed under conditions of reduced oxygen tension constituting an unfavourable environment. It is also clear however, that there are correlations between the size and shape of *Ps. (Ps.) equivalvis* and the sediment grain size, rate of sedimentation and energy of the environment. Specimens from condensed deposits reach a large size, those from high energy environments having rounded plicae. Specimens from expanded high energy sandstone sequences reach a somewhat smaller maximum size and have rounded plicae. Specimens from expanded argillaceous sequences are much smaller, have acute plicae, and usually have a low H/UA ratio.

The correlation between high environmental energy and roundness of the plicae is most easily explained as the result of pre- and post-mortem abrasion of the originally angular plicae by wave and current-induced rolling of the shell.

The correlation between stratigraphic condensation and large size could be the consequence of one or more of the following factors:

a) High environmental energy. Most condensed sequences containing large *Ps. (Ps.) equivalvis* are developed as high energy chamosite oolites. In such environments the increased rate of supply of suspended food and dissolved oxygen might be expected to contribute to faster growth. However, the presence of comparably large specimens in a low energy horizon at Blockley seems to argue against this hypothesis.

b) Low turbidity condensed sequences are the result of decreased supply of sediment from suspension thus one can expect relatively clear water. This should lead to a reduction in the time required for cleaning the gills and defaecating and a consequent increase in the time spent feeding. Observations by the author on the extant species *Chlamys opercularis* reveal that high turbidity forces the animal to close the shell and abandon feeding, thus continuous high turbidity could be expected to markedly affect the growth rate. Slow sedimentation can also be expected to reduce turbidity (and thus enhance growth rate) by promoting the early diagenetic formation of a carbonate cement (HALLAM, 1972) which would inhibit resuspension of the sediment by lateral water movement. The fact that *Ps. (Ps.) equivalvis* attains a considerable size in expanded sandstone sequences does not however lend support to the view that the very large sizes attained in condensed sequences are simply the result of low turbidity. Neither can the latter easily explain the large sizes attained by presumably nektonic ammonites in condensed sequences.

c) Increased temperature. With the implicit assumption (given empirical support by the work of NICOL, 1967) that higher temperatures enable the development of large size, HEWITT and HURST (1977) have invoked climatic amelioration to account for the abnormally large sizes attained by molluscs at certain condensed horizons in the English Jurassic. In the case of Ps. (Ps.) equivalvis this fails to account for the small size of specimens in stratigraphically equivalent expanded sequences. However, HALLAM (1963) has suggested, on the basis of sedimentological evidence, that condensed ironstone formation may take place on shoals and that such environments may be warmer than surrounding deep water areas, characterised by clastic sedimentation. While such a model has the merit of explaining the large size of both benthos and nekton in condensed sequences, it suffers from a lack of actual evidence for increased temperature in the shoal environment. Until some independent evidence for the latter is obtained it seems advisable to adopt a composite theory (involving 2 and 3) to explain the correlation between condensed sequences and the development of large size in Ps. (Ps.) equivalvis. It has been assumed throughout that the latter is the consequence of relatively rapid growth. While this seems the most reasonable supposition and has a variety of plausible explanations (see above) the possibility cannot be entirely discounted that some undetected characteristic of the environment of condensed sequences (perhaps reduced predation) increased the length of life and thus allowed the development of larger sizes. An analysis of growth lines can be expected to provide a test for the assumption of faster growth.

The small size and low H/UA ratio of specimens from expanded argillaceous sequences is most easily interpreted as the result of relatively slow growth in conditions essentially opposite to those in the highly favourable condensed sequences. The local abundance of such 'stunted' specimens need not be viewed as evidence against this interpretation (see pp. 55, 124) and indeed 'stunting' may be an inappropriate term to use for the development of what are in fact adaptive shell features (see Section 9).

The lack of Ps. (Ps.) equivalvis in apparently highly suitable condensed facies containing Weyla in the Jamesoni zone of the Pyrenees is further evidence for HALLAM's contention (see p. 69) that Pseudopecten and Weyla were competitors. However, the occurrence of Ps. (Ps.) dentatus in the same deposits indicates that the competitive reaction did not extend to all Pseudopecten species. Indeed the inverse correlation in numbers or total mutual exclusion of Ps. (Ps.) equivalvis from Ps. (Ps.) dentatus in other areas (see p. 70) suggests that the absence of the former from deposits of the Jamesoni zone in the Pyrenees may be due more to competition with the latter species than with Weyla. Ps. (Ps.) veyrasensis has a similar distribution to Ps. (Ps.) dentatus and thus may also have had a competitive reaction with Ps. (Ps.) equivalvis. The frequent inverse correlation in numbers of Ps. (Ps.) equivalvis and Entolium (E.) lunare is strong evidence for competition. While in ironstones the dominant species appears to

switch from the latter to the former after the Sinemurian there seems to be no secular change in sandstones, the dominant species at any one time or place being, therefore, presumably determined by priority.

9. FUNCTIONAL MORPHOLOGY

The strongly ornamented lower valve and quite thick shell of the large specimens of *Ps. (Ps.) equivalvis* common in high energy environments is paradigmatic for an adult reclining mode of life. The large byssal notch indicates that the juvenile obtained stability by means of byssal attachment. However, the allometric reduction in size of the notch indicates that byssal attachment was gradually abandoned during ontogeny. In the morphologically and ecologically similar extant species *Chlamys opercularis* byssal attachment effectively ceases at shell heights above 50 mm (SOEMODIHARDJO, 1974).

The relatively high convexity of the left valve is nonparadigmatic for reclining but is well suited to providing lift during swimming and combined with the ontogenetic increase in umbonal angle probably served to prolong this capacity until quite late stages in ontogeny.

The small adult size and low H/UA ratio of specimens from expanded argillaceous sequences is adaptive for the environments represented by such sediments. Small size inhibits sinking into the soft substrate while both small size and a relatively large umbonal angle maximise the possibility of escape from sediment swamping by swimming, through maximising the trust/weight ratio of the shell. Swimming ability in combination with a strongly plicate shell was also probably directed against attempted predation. The disadvantage of a plicate shell, in localising wear on the plical crests, was apparently offset by sub-plical shell thickening.

10. ORIGINS AND EVOLUTION

Undoubted specimens of *Ps. (Ps.) equivalvis* are known from the Planorbis zone so the origins of the species probably lie outside the Jurassic. However, no obvious ancestors present themselves.

Phyletic size increase is a very marked trend in Ps. (Ps.) equivalvis. However, the prevalence of ecophenotypic size variations (see Section 8) makes for great difficulty in the precise documentation of the trend. It is clear therefore that attention must be concentrated on the same environment at all stratigraphic levels. For this purpose the analysis is restricted to condensed sequences since these seem to represent the most clearly defined environment. Within the latter there is an increase in maximum height from 45 mm (Sinemurian) to 90 mm (L. Pliensbachian) to 179 mm (U. Pliensbachian). There may also be an associated acceleration in the development of H/UA since large L. and U. Pliensbachian specimens have H/UA values which plot above a projected 'average' Sinemurian ontogeny estimated from 'static' data (text fig. 58). However, the rather broad limits of the available data do not allow exclusion of the possibility that Sinemurian ontogenies in fact exhibit a much more rapid increase in H with

Text fig. 58: *Pseudopecten (Ps.) equivalvis* – height/umbonal angle for specimens from Sinemurian, and L. and U. Pliensbachian condensed sequences.

respect to UA thus the high H/UA values of at least large U. Pliensbachian specimens could represent no more than hypermorphic extension of Sinemurian allometry through the medium of phyletic size increase. Nevertheless, the H/UA values of moderate sized L. Pliensbachian specimens do seem to represent a genuine departure from Sinemurian ontogenies thus acceleration would appear to be evinced in at least the early stages of the phylogeny of *Ps. (Ps.) equivalvis.* If this is the case U. Pliensbachian H/UA values would seem to indicate subsequent *retardation* in the development of H/UA albeit only to the extent of returning ontogenies to a Sinemurian condition.

There is clearly a pressing need either for more 'static' data or for a 'dynamic' analysis of shape development using growth lines in order to facilitate a rigorous assessment of the role of heterochrony in the phylogeny of *Ps. (Ps.) equivalvis*.

Whether or not acceleration and subsequent retardation of shape development has occurred the fact remains that large U. Pliensbachian forms of Ps. (Ps.) equivalvis have relatively high H/UA ratios. As such they are mechanically inferior to earlier forms with respect to their design for swimming. This is difficult to interpret in conjunction with phyletic size increase. One might have expected evolution towards a more efficient, low H/UA, design in order to counteract the limitation on mobility and consequent susceptibility to predation imposed by increased size. (In living scallops a reduced ratio of muscle strength to body weight leads to the progressive loss of swimming ability as size increases during ontogeny [GOULD, 1971; SOEMODIHARDJO, 1974]; as a result escape from predators by flight eventually becomes impossible.) A resolution to this paradox may lie in the observation that some large sessile bivalves resist predation by the *absolute* strength of the adductor muscle. Thus PAINE (1976) has observed that starfish are unable to prise apart the valves of Mytilus which are more than 8–10 cm in length. One may therefore perhaps infer that Ps. (Ps.) equivalvis gave up a fugitive policy towards the end of its stratigraphic range in favour of a policy of passive resistance. Such a strategy would only be worthwhile if large size could be achieved rapidly thus the hypothesis could be tested by an analysis of growth lines to see if faster growth was, in fact, characteristic of later populations. 'Static' data (see above) certainly allows that this may have been the case.

Phyletic increase in size, together with an apparent retardation in shape development and a reduction in tolerance of argillaceous substrates in the U. Pliensbachian (see Section 7) points to the prevalence of 'K' selection towards increased trophic efficiency. The high abundance of *Ps. (Ps.) equivalvis* in certain U. Pliensbachian chamosite oolites need not be viewed as evidence against this interpretation since it may well be the result of stratigraphic condensation.

The widespread development of unfavourable bituminous shale facies in the L. Toarcian undoubtedly caused a severe depletion of the numbers of *Ps. (Ps.) equivalvis.* The subsequent extinction of the species may have been the simple result of depletion to such an extent that re-establishment of self-supporting populations was impossible. However, it may also have been due to competition with one or more of the newly evolved, ecologically similar species, *Ps. (Echnopecten) barbatus, Propeamussium (P.) laeviradiatum* and *Entolium (E.) corneolum.*

Pseudopecten (Pseudopecten) dentatus (J. DE C. SOWERBY 1827a)

Pl. 2, Figs. 11-14; text figs. 59-61, 62 (pars)

Synonymy

- v* 1827a *Pecten dentatus* sp. nov; J. DE C. SOWERBY, p. 143, pl. 574, fig. 1.
- v 1833 Pecten priscus SCHLOTHEIM; GOLDFUSS, p. 43, pl. 89, fig. 5 (non SCHLOTHEIM sp.).
- v 1833 Pecten dentatus J. DE C. SOWERBY; GOLDFUSS, p. 46, pl. 90, fig. 7.
- 1850 Pecten dentatus J. DE C. SOWERBY; D'ORBIGNY, v. 1, p. 285.
- v non 1858 Pecten dentatus J. DE C. SOWERBY; QUENSTEDT, p. 753, pl. 92, fig. 3.
 - 1860 *Pecten Thiollieri* sp. nov; MARTIN, p. 89, pl. 6, figs. 21–23.
 - 1864 Pecten Thiollieri MARTIN; DUMORTIER, p. 62, pl. 10, figs. 4–7.
 - 1864 Pecten Euthymei sp. nov; DUMORTIER, p. 64, pl. 10, figs. 8–10.
 - 1867 *Pecten priscus* SCHLOTHEIM; DUMORTIER, p. 216, pl. 48, fig. 4 (non SCHLOTHEIM sp.).
 - 1867 Pecten dentatus J. DE C. SOWERBY; WAAGEN p. 632.
 - 1868 Pecten Dieulafaiti sp. nov; JAUBERT, p. 234.
 - 1869 Pecten acutivadiatus MUNSTER; DUMORTIER, p. 135, pl. 21, fig. 8 (non MUNSTER sp.).
 - ? 1872 Pecten Bersaskensis sp. nov; TIETZE, p. 106, pl. 6, fig. 3.
 - (?) 1876 Pecten Thiollierei MARTIN; TATE and BLAKE, p. 363.
 - (?) 1884 Pecten Thiollieri MARTIN; SIMPSON, p. 170.
 - ? 1886 Pecten Thiollieri Martin; Winkler, p. 30.
 - 2 1903 Pecten (Chlamys) Thiollierei Martin; Bistram, p. 33, pl. 2, figs. 13–15.
 - ? 1904 Chlamys aequiplicata (TERQUEM); COSSMANN, p. 503, pl. 16, fig. 15 (non TERQUEM sp.).
 - 1909 Pecten (Chlamys) cf. amphiarotus DI STEFANO; TRAUTH, p. 90, pl. 2, fig. 17.
 - ? 1924 Pecten dobbertinensis sp. nov; OFRTEL, p. 564.
 - 1925 Pecten priscus var. Dieulafaiti JAUBERT; DUBAR, p. 266, pl. 5, figs. 1–6.
 - (?) 1926 Chlamys Thiollieri (MARTIN); ROMAN, p. 105.
 - 1929 Pecten (Pseudopecten) Dieulafaiti JAUBERT; LAN-QUINE, p. 131, pl. 3, fig. 2.
 - 1936 Aequipecten thiollerei (MARTIN); DECHASEAUX, p. 40.
 - 1936 Aequipecten Eutbymei (DUMORTIER); DECHAS-EAUX, p. 41.
 - 1936 Aequipecten priscus var. Dieulafaiti (JAUBERT); DECHASEAUX, p. 42.
- non 1948 Pecten (Chlamys) aff. bersaskensis TIETZE; DU-BAR, p. 162, pl. 14, figs. 4a, 4b.
 - 1948 Pecten (Aequipecten) norgliensis TAUSCH; DU-BAR, p. 163, pl. 13, fig. 12 (non TAUSCH sp.).
 - 1948 Pecten (Aequipecten) semiarticulatus G. MENE-GHINI; DUBAR, p. 216, pl. 28, figs. 22–25, text fig. 53 (non G. MENEGHINI sp.).
- (?) 1950 Chlamys Thiollerei (MARTIN); ROMAN, p. 25.
- 1966 Aequipecten dieulafaiti (JAUBERT); BEHMEL and GEYER, p. 28.
- 1973 *Chlamys (Aequipecten) Thiollerei (MARTIN)*; LEN-TINI, p. 28, pl. 15, fig. 6.

Lectotype of *Pecten dentatus* J. DE C. SOWER-BY 1827a, p. 143, pl. 574, fig. 1 designated herein; BM 20719; Pl. 2, Figs. 11, 12 herein; H: 55, L: 58, UA: 109, PL: 20; gravels derived from M. Lias (U. Pliensbachian), Bugbrook, Northamptonshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Nearly orbicular, convex, minutely striated concentrically, ribbed; ribs about twenty close, large, angular, obtuse; ears defined, small; margin deeply toothed; valves similar.

The peculiar characters of this *Pecten* are the sharp projection of the edge between each rib and the flat inclined sides of each rib. Several specimens of this fossil are in the collection of Miss BAKER, who found them in transported fragments of limestone, in what are there called gravel pits, at Bugbrook and Staverton, in Northamptonshire. It also occurs in the valley of Catmus in Rutlandshire. The figure is taken from a specimen which has both valves, but wants the ears; they are supplied from another, in other respects inferior, individual.'

Text fig. 59: Pseudopecten (Ps.) dentatus - European distribution.

2. AMENDED DIAGNOSIS

Distinguished from *Ps. (Ps.) equivalvis* by the higher, vertically striated, disc flanks (Pl. 2, Fig. 13) and down-sulcal tongueing of the comarginal striae (Pl. 2, Figs. 11, 12). Distinguished from *Ps. (Ps.) veyrasensis* by the larger modal number of plicae (17/18 cf. 14).

Text fig. 60: Pseudopecten (Ps.) dentatus - height/length.

3. AMENDED DESCRIPTION

Essentially similar to *Ps. (Ps.) equivalvis* apart from the diagnostic features (see Section 3), smaller maximum height 70 mm; DUBAR, 1925), greater convexity, acute angle between the anterior auricles and the hinge line, obtuse angle be-

tween the posterior auricles and the hinge line, and the ornament. Both valves ornamented with between 16 and 20 (most commonly 17 or 18) radial plicae (text fig. 62), rounded on the right valve, angular on the left. Usually one more plica on left valve than right; plicae occasionally bearing lamellae near the anterior and posterior margins.

Metric proportions are plotted in text figs. 60, 61.

Text fig. 61: Pseudopecten (Ps.) dentatus - height/umbonal angle.

4. DISCUSSION

The lectotype (herein designated) of '*Pecten' dentatus* J. DE C. SOWERBY (BM 20719; Pl. 2, Figs. 11, 12; 1) is a large, somewhat atypical, form with 20 plicae. It has moreover suffered post-mortem compression such that the characteristic
features of high disc flanks and convexity are not apparent. However, the diagnostic ventral tongueing of the sulcal growth lines is visible and leaves no doubt that the specimen should be the name bearer for the species described in Section 3. 'P.' priscus SCHLOTHEIM; GOLDFUSS (non SCHLOTHEIM) also exhibits this feature while 'P.' acutiradiatus MUNSTER; DUMORTIER (non MUNSTER) has the vertically striated disc flanks diagnostic of Ps. (Ps.) dentatus.

'P.' Thiollieri MARTIN was said to have 20 plicae but the figures show only 17 or 18 as is typical of Ps. (Ps.) dentatus. Moreover, the characteristic convexity and disc flank ornament of the latter species is well displayed. Similarly, 'P.' Thiollieri MARTIN; WINKLER was also said to have 20 plicae but a specimen (BSPHG) collected from the same horizon and locality as WINKLER's, exhibits only 16 plicae. Records of Martin's species in Dechaseaux (1936) and Len-TINI (1973) refer to specimens with, respectively, vertically striated disc flanks and ventrally tongueing sulcal growth lines, as in Ps. (Ps.) dentatus. However, specimens referred to MARTIN'S species by BISTRAM (1903) appear to have curvilinear growth lines and 21 plicae, as in Ps. (Ps.) equivalvis. In view of the evident possibility of confusion with the latter species, inadequately described and unillustrated records of MARTIN's species in TATE and BLAKE (1876), SIMPSON (1884) and ROMAN (1926, 1950) can only be tentatively synonymised with Ps. (Ps.) dentatus. However, examples of MARTIN's species with 20 plicae and the disc flank ornament and convexity characteristic of Ps. (Ps.) dentatus are clearly figured and reported to be common by DUMORTIER (1864). It may therefore be that the mean (and perhaps range) in the number of plicae was higher early in the stratigraphic range of the species.

Text fig. 62: Pseudopecten (Ps.) veyrasensis/dentatus – frequency distribution for number of plicae.

'P.' Euthymei DUMORTIER has the characteristic disc flank and sulcal ornament of *Ps. (Ps.) dentatus* and the number of plicae (16) is within the range of variation in the latter species.

P.' Dieulafaiti JAUBERT was erected for a specimen originally referred to *P.' priscus* SCHLOTHEIM by DUMORTIER (1867). The number of plicae (17) and the down sulcal tongueing of the growth lines indicate its identity with *Ps. (Ps.) dentatus*. Subsequent varietal use of the name does not depart from JAUBERT'S hypodigm.

'P.' Bersaskensis TIETZE was erected for a single specimen which was said to have 16 plicae, thus suggesting that it may be conspecific with *Ps. (Ps.) dentatus.* However, the width of the sulci and shallowness of the byssal notch may justify a specific separation. Indeed, only 15 plicae are depicted in the figure and this together with the fact that DUBAR (1948) has applied TIETZE's specific name to forms with 14 plicae, sug-

'*Chlamys*' cf. *aequiplicata* (TERQUEM); COSSMANN (non TERQUEM) has 16 plicae but the small size of the figured specimen does not allow an unequivocal specific determination.

'P.' ('Ch.') cf. amphiarotus D1 STEFANO; TRAUTH (non D1 STEFANO) was applied to 8 specimens possessing between 17 and 19 plicae, moderate convexity and ventrally tongueing sulcal growth lines as in *Ps. (Ps.) dentatus.*

'P.' dobbertinensis OERTEL was separated from 'P.' aequivalvis J. SOWFRBY by the reduced number of plicae (17) and greater convexity. Although a figure was not provided this is strongly suggestive of equivalence with Ps. (Ps.) dentatus.

The names 'P.' ('Aequipecten') norigliensis TAUSCH (non TAUSCH) and 'P.' ('Ae.') semiarticulatus G. MENEGHINI (non G. MENEGHINI) were applied by DUBAR (1948) to specimens with, respectively, 16 and 17 plicae. In both cases the down-sulcal tongueing of the comarginal ornament indicates that they should be included within Ps. (Ps.) dentatus.

QUENSTEDT'S (1858) use of J. de C. SOWERBY'S specific name is for a specimen (GPIT 2-92-3; Pl. 6, Fig. 12) which is clearly a representative of the 'coarse' phenotype of *Chlamys* (*Ch.*) textoria.

5. STRATIGRAPHIC RANGE

Ps. (Ps.) dentatus first occurs in the Planorbis zone (Hettangian) when it is locally common. In like manner it is found in all stages until the U. Pliensbachian. Toarcian records are limited to two specimens from Adderbury, Oxon (BM L30490) which are almost certainly from the lower part of the stage. However, *Ps. (Ps.) dentatus* returns in moderate numbers in the Aalenian/Bajocian. A single specimen from the Parkinsoni zone (BM L77551) is the last known representative of the species.

6. GEOGRAPHIC RANGE

Ps. (Ps.) dentatus occurs sporadically over the whole of the European region (text fig. 59) but is unknown from the rest of the world. Within Europe the patchy distribution of the species is probably at least in part due to the localised development of the favoured condensed sedimentary facies (see Section 8). However, gradual migration from an initial Hettangian base in S. Europe may also have controlled distribution. In the Sinemurian the species is only common in the Rhone (DUMORTIER, 1867) yet apparently suitable condensed facies are well developed in, for instance, the Frodingham Ironstone of Lincolnshire. The only records from N. Europe during the Sinemurian are from clays of the Bucklandi zone in Yorkshire (TATE and BLAKE, 1876; SIMPSON, 1884). L. Pliensbachian records are more widespread in continental Europe yet Ps. (Ps.) dentatus is again conspicuous by its absence from condensed deposits in England (e. g. the 'Pecten' Beds of Blockley, Glos., and Scunthorpe, Lincs.). With reference to a hypothetical migration it should however be noted that the foregoing examples are of horizones in which Ps. (Ps.) equivalvis, a possible competitor (see Section 8), is abundant.

In the U. Pliensbachian the range of *Ps. (Ps.) dentatus* extended north to include England and also spread south to Morocco (DUBAR, 1948). However, in the M. Jurassic the species was restricted to England despite the development of apparently suitable condensed facies, lacking in *Ps. (Ps.) equivalvis*, in other areas (e. g. S. Germany and France).

7. DESCRIPTION OF ECOLOGY

Ps. (*Ps.*) dentatus is quite common in the Planorbis zone (Hettangian) of the Rhone basin where it reaches a maximum height of 35 mm (DUMORTIER, 1864). A general impression gained from the literature is that forms with plical counts in the upper part of the range of variation may be more common than at later horizons in the stratigraphic range (see Section 4). The associated sediments are ferruginous limestones with a diverse fauna of ammonites, crinoids and corals together with the bivalves *Chlamys* (*Ch.*) valoniensis, *Ch.* (*Ch.*) pollux, *Plagiostoma, Plicatula* and *Cardinia.* In the same region *Ps.* (*Ps.*) dentatus becomes very common in the Oxynotum zone (Sinemurian) which is represented by a maximum of 8 m of limestone. Large, well preserved specimens occur with abundant '*Terebratula*', ammonites and the bivalves *Cardinia* and *Gryphaea* (DUMORTIER, 1867).

In the Jamesoni zone (L. Pliensbachian) of the Pyrenees, *Ps. (Ps.) dentatus* is locally common enough to form lumachelles containing specimens up to a maximum height of 70 mm (DUBAR, 1925). In this region the whole substage is condensed into a 2–3 m succession containing abundant ammonites and the pectinids *Ch. (Ch.) textoria, Entolium (E.) lunare and Weyla. Ps. (Ps.) equivalvis* is notable by its absence.

Ps. (Ps.) dentatus occurs abundantly in reefal deposits in the U. Pliensbachian of Morocco where it is associated with corals, algae, brachiopods and large bivalves of the genera Lithiotis, Opisoma and Pachyrisma (DUBAR, 1948). Ps. (Ps.) veyrasensis also occurs but Ps. (Ps.) equivalvis is absent. Ps. (Ps.) dentatus is found, albeit rather less commonly, in nonreefal micritic limestones in N. Africa and Provence where it is often associated with accumulations of rhynchonellid and terebratulid brachiopods (LANQUINF, 1929). In the U. Pliensbachian of England, Ps. (Ps.) dentatus only occurs in any numbers in deposits of the Spinatum zone in Oxfordshire, Northamptonshire and Somerset, where it reaches a maximum height of 55 mm (BM 20719). The sediments are chamositic oolites, locally sandy, containing a fauna dominated by the brachiopods Tetrarhynchia tetrahedra and Lobothyris punctata. E. (E.) lunare, Ps. (Ps.) veyrasensis and Ps. (Ps.) equivalvis also occur but the last is much less common than in contemporaneous deposits further north (e.g. Cleveland Ironstone) where Ps. (Ps.) dentatus is absent.

In the M. Jurassic *Ps. (Ps.) dentatus* is only known to occur in any numbers in the condensed ironshot limestones of the Aalenian/Bajocian in Somerset and Dorset where it attains a maximum height of 38 mm (BM 52121). The associated fauna is dominated by terebratulid and rhynchonellid brachiopods and the bivalves *Astarte, Pholadomya* and *Trigonia*.

Apart from the occurrences discussed above *Ps. (Ps.) dentatus* is a rare species. Wher it is found over a broad palaeolatitudinal range, as in the U. Pliensbachian, the species seems to be more common towards the south.

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that environments of relatively high temperature and low turbidity were favourable to *Ps. (Ps.) dentatus.* The former view is evidenced by the relative abundance of the species in low palaeolatitudes while the latter view is evidenced by the large size and frequent abundance in condensed sequences where a combination of slow sedimentation and early diagenetic cement formation probably reduced turbidity (see p. 7I). The association with hermatypic corals, which are unable to tolerate high turbidity, can presumably be explained on the same basis, while the extreme rarity of the species in the Toarcian can be seen to be the consequence of the widespread development of expanded clay facies, producing turbid waters and possibly soupy substrates.

Reef deposits and some of the condensed sequences (e. g. M. Lias chamosite oolites and the Aalenian/Bajocian ironshot limestones of England) were probably characterised by high environmental energy as well as low turbidity. However, others (e. g. those in the L. Lias of S. France) were probably formed under more tranquil conditions, indicating that rapid water movement was not a prerequisite for *Ps. (Ps.) dentatus*. Indeed the absence of the species from a number of apparently suitable condensed sequences (see Section 6) coupled with its occasional presence, in moderate numbers, in expanded limestone sequences suggests that low turbidity may not have been the sole or even most important factor controlling distribution. The association with numerous brachiopods in both high and low energy environments is unusual for a Jurassic pectinid and some reliance on the presence of the latter group, perhaps for provision of firm substrates for the byssal attachment of the juvenile (see Section 9), may thus explain the localised occurrence of Ps. (Ps.) dentatus. Another explanation may be provided by competition with the eurytopic species Ps. (Ps.) equivalvis whose numbers are inversely correlated with those of Ps. (Ps.) dentatus in sediments whose physical environment of deposition would appear to have been suitable for both species. Competition with Ps. (Ps.) equivalvis in such environments could account for the rarity of Ps. (Ps.) dentatus in the L. Lias of N. Europe and thus obviate the need to invoke a migration from a more southerly source (see Section 6). There is no evidence for competition with Ps. (Ps.) veyrasensis, Entolium (E.) lunare, Chlamys or Weyla (see p. 71).

It must be admitted that a unified explanation for the patchy distribution of *Ps. (Ps.) dentatus* is still wanting and a more detailed study of its palaeoecology might be expected to reveal some critical aspect of stenotopy which has hitherto gone undetected.

9. FUNCTIONAL MORPHOLOGY

In *Ps. (Ps.) dentatus* moderate adult size and shell thickness appear to represent a compromise between the opposing paradigms for reclining in both high and low energy environments. The firm substrates usually occupied under such conditions (see Section 8) perhaps also allowed the development of a relatively convex shell with its attendant strengthening and stiffening attributes by reducing the danger, to which such a shape is susceptible, of sinking into the substrate. The

increased mechanical efficiency thus acquired could account for the smaller number of plicae relative to the less convex species Ps. (Ps.) equivalvis. The occasional presence of Ps. (Ps.) dentatus in expanded micrite sequences does not however support the foregoing interpretation of morphology as an adaptation to a reclining mode of life. The moderate shell size and convexity would have been poorly suited to reclining on the relatively soft substrates afforded by such sediments. Moreover, the large juvenile byssal notch indicates that Ps. (Ps.) dentatus was byssate for at least the early part of its ontogeny. The subsequent relative reduction in the size of the notch indicates that this ability was gradually lost but in the morphologically similar Recent species Argopecten gibbus (= Aequipecten gibbus nucleus) byssal attachment continues to shell heights of 35 mm (STANLEY, 1970). It may therefore be that at least early representatives of Ps. (Ps.) dentatus (see Section 7) were byssate throughout life.

10. ORIGINS AND EVOLUTION

Since *Ps. (Ps.) dentatus* is recorded in the Planorbis zone its origins must be sought before the Jurassic. '*Pecten*' *coronatiformis* KRUMBECK (1924) a species described from the U. Trias of Timor with vertically striated disc flanks and ventrally tongueing growth lines in the sulci, seems the most likely ancestor. KRUMBECK's species differs from *Ps. (Ps.) dentatus* only in the possession of angular plicae on the right valve and rounded plicae on the left valve.

Within Ps. (Ps.) dentatus maximum height shows no significant overall phyletic change in the passage from the Hettangian (30 mm) to the L. Pliensbachian (70 mm) to the U. Pliensbachian (55 mm) to the Aalenian/Bajocian (38 mm). There is, however, limited evidence (see Section 4) for phyletic change in the pattern of plical variability, Hettangian populations seeming to have a higher mean number of plicae. Later populations may have been subject to character displacement consequent upon competition with Ps. (Ps.) equivalvis (see Section 8), a species having a higher modal number of plicae (22 cf. 17/18) which only became abundant in the Sinemurian. Much more detailed analysis of Hettangian populations is needed to establish the reality of the phyletic change and a test of the character displacement hypothesis through an analysis of Aalenian/Bajocian populations (which, if character displacement has been operative, should show an increased mean number of plicae due to the decline of Ps. (Ps.) equivalvis) is also required. The lack of an obvious functional basis for character displacement in this example need not be viewed as evidence against its action. Most reported cases (e. g. RUSSELL, 1972; SCHINDEL and GOULD, 1977) can only be explained by invoking selection of a pleiotropic gene which also codes for a significant but undetected physiological difference.

It is by no means clear how an apparently stenotopic and geographically restricted species such as *Ps. (Ps.) dentatus* managed to re-establish itself after a drastic reduction in numbers through the widespread development of unfavourable facies in the Toarcian, when the relatively eurytopic and cosmopolitan *Ps. (Ps.) equivalvis* suffered a similar decline which apparently led to its extinction (see p. 73). Neither is a convincing deterministic explanation available to account for the Bajocian extinction of *Ps. (Ps.) dentatus* although it could relate to the extinction of some commensal species (see Section 8).

Pseudopecten (Pseudopecten) veyrasensis (DUMORTIER 1864) Pl. 2, Figs. 19–21; text figs. 62 (pars), 63

Synonymy

- ? 1855 Pecten aequiplicatus sp. nov; TERQUEM, p. 323, pl. 23, fig. 5.
 - 1864 Pecten veyrasensis sp. nov; DUMORTIER, p. 163, pl. 24, fig. 15.
 - 1869 Pecten Julianus sp. nov; DUMORTIER, p. 307, pl. 40, fig. 1.
- 1869 Pecten Humberti sp. nov; DUMORTIER, p. 308, pl. 40. fig. 2.
- ? 1872 Pecten Bersaskensis sp. nov; TIETZE, p. 106, pl. 6, fig. 3.
- 1878 *Pecten heterotus* sp. nov; GEMMELLARO and DI BLASI in GEMMELLARO, p. 391, pl. 30, figs. 3–5.
- 1878 Pecten isoplocus sp. nov; GEMMELLARO and DI BLASI in GEMMELLARO, p. 392, pl. 30, figs. 6, 7.
- 1886 Pecten Seguenzae sp. nov; DI STEFANO, p. 135, pl. 4, figs. 31–33.
- 1892 Pecten convexus PARONA; PARONA, p. 16, pl. 1, fig. 4.
- non 1904 Chlamys aequiplicata (TERQUEM); COSSMANN, p. 503, pl. 16, fig. 15.
 - 1926 Chlamys Humberti (DUMORTIER); ROMAN, p. 113.
 - 1929 Pecten (Pseudopecten) julianus DUMORTIER; LAN-QUINE, p. 131.
 - 1932 Pecten cf. Julianus DUMORTHER; TZANKOV and BONCEV, p. 231, pl. 1, fig. 10.
- non 1936 Aequipecten aequiplicatus (TERQUEM); DECHAS-EAUX, p. 41.
 - 1948 Pecten (Chlamys) aff. bersaskensis TIETZE; DU-BAR, p. 162, pl. 14, figs. 4a, 4b.
 - 1948 Pecten (Aequipecten) Julianus DUMORTIFR; DU-BAR, p. 163, pl. 13, figs. 13a, 13b.
- non 1973 Chlamys (Aequipecten) aequiplicata (TERQUEM); LENTINI, p. 27, pl. 15, fig. 3.

The type material of *Pecten Veyrasensis* DU-MORTIER 1864, p. 163, pl. 24, fig. 15 may be in MHNL. DUMORTIER cites the following dimensions: H: 20, L: 20, C/2: 5, UA: 93. The material was derived from the M. Lias (U. Pliensbachian) of Ardèche.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Testa orbiculari, compressa, costata, costis circa 13 angulatis latis, rugis transversis impressis, quae in medio costarum angulosae sursum ascendunt, intervallis profunde impressis, foraminatis.

Dimensions: longeur 20 millim., largeur 20 millim., épaisseur 5 millim. ¹/₂, ouverture de l'angle apical 93°.

Coquille arrondie, épaisse, portant environs 13 côtes, grosses, carenées, ornées de rides saillantes, en chevrons, dont le sommet est dirigé en haut. Les sillons qui séparent les Côtes sont étroits et profonds, et comme les chevrons qui ornent les côtes viennent s'y rencontrer, il en resulte que ces sillons ne sont qu'une serie de petites cavités resserrées entre les extremités de ces chevrons. Entre la dernière côte et la bord de la coquille il existe une petite aréa, ornée de striés transverses. Le bord cardinal est droit – L'oreille anterieure grande, ornée de striés verticales sinueuses et fortement enchancrée pour le passage du byssus: oreille posterieure... La coquille est fortement sinueuse dans la région palleale. Ce *Pecten* est précieux, parce que grace sa livrée riche et compliquée, il est toujours reconnaissable, même dans ces fragments. Il paraît spécial aux dépôts de l'Ardèche: je l'ai recueilli a Veyras, dans les couches remplies de tiges du *Neuropora socialis*, si remarquable de cette localité.

Localité: Veyras. r. Explication de la figure: Pl. XXIV, fig. t5, *Pecten Veyrasensis* de Veyras, grossi deux fois. De ma collection.'

2. AMENDED DIAGNOSIS

Distinguished from *Ps. (Ps.) dentatus* and *Ps. (Ps.) equivalvis* by the lower modal number of plicae (14 cf. 17/18 and 22 respectively) and from the latter also by the vertically striated disc flanks and down-sulcal tongueing of the comarginal striae.

3. AMENDED DESCRIPTION

Essentially similar to *Ps. (Ps.) dentatus*, differing only by the diagnostic feature (see Section 2), the range of plical variation (12–15, text fig. 62) and by the tendency to develop a rectilinear plical form on the shell interior (Pl. 2, Fig. 21). The maximum height is 74.5 mm (GPIG).

4. DISCUSSION

The specific name applicable to the range of forms making up the left-hand peak of text fig. 62 is a matter of some uncertainty. Apparently, the earliest description of a species within the 12–15 plicae range is '*Pecten' acquiplicatus* TERQUEM. Although the text specifies the relatively uncommon number of 12 plicae the figure illustrates a more typical specimen with 15 plicae. However, TERQUEM also referred to small spines on the left valve and subsequent applications of the name, by authors who may have had access to the type material, have been to forms with 12 plicae and spines (DECHASEAUX, 1936) or 10 plicae (LENTINI, 1973) which suggest that 'P.' aequiplicatus is a poorly figured junior synonym of Spondylopecten (Plesiopecten) subspinosus. In contrast, COSSMANN (1904) has figured a specimen with 16 plicae under TERQUEM's species which suggests that 'P.' aequiplicatus is an extreme variant of Ps. (Ps.) dentatus. In view of this ambiguous usage and in the lack of knowledge concerning the whereabouts of the type material, it seems best to rule out TERQUEM's species as a candidate for the name of the species described in Section 3. The next available name is 'P.' Veyrasensis DUMORTIER. The original description (see Section 1) specifies 13 plicae although the figure shows a more typical number of 14. DUMORTIER's species 'P.' Julianus and 'P.' Humberti, with 12 and 14 plicae respectively, fall within the range of variation and exhibit no other distinguishing features.

The original description of 'P.' Bersaskensis TIETZE specifies 16 plicae (outside the range of Ps. (Ps.) veyrasensis) but since the figure depicts only 15 plicae and specimens with 14 plicae are referred to TIETZE's species by DUBAR (1948), it is possible that 'P.' Bersaskensis is a synonym of Ps. (Ps.) veyrasensis. However, the width of the sulci and shallowness of the byssal notch may justify a distinction, although this appearance could be due to reversed printing of a copper engraing (see p. 17).

P. heterotus and *P. isoplocus* GEMMELLARO and DI BLASI exhibit 13–14 and 14 plicae respectively, and both have the moderately high disc flanks, rounded right valve plicae and angular left valve plicae characteristic of *Ps. (Ps.) veyrasensis*. *P. Seguenzae* DI STEFANO with 14–15 plicae is similarly inseparable.

The original description of '*P.*' convexus PARONA has proved impossible to trace but PARONA's (1892) subsequent use of the name is for a specimen whose figure is indistinguishable from *Ps.* (*Ps.*) veyrasensis.

Text fig. 63: Pseudopecten (Ps.) veyrasensis - European distribution.

5. STRATIGRAPHIC RANGE

Ps. (Ps.) veyrasensis apparently first occurs in the Angulata zone (Hettangian) of the Rhone, where it is fairly common (DUMORTIER, 1864). There are no unequivocal Sinemurian records although numerous specimens are recorded from an unspecified horizon in the Hettangian/Sinemurian sequence of Sicily (GEMMELLARO, 1878). L. Pliensbachian records are restricted to 6 specimens (BM L92958-63) from the Jamesoni zone of the latter area but the species becomes locally quite common again in the U. Pliensbachian. There are no records after the Spinatum zone.

6. GEOGRAPHIC RANGE

Ps. (Ps.) veyrasensis is unknown outside the European region. Within Europe (text fig. 63) the limited available data (with unequivocal Hettangian records being restricted to the Rhone and U. Pliensbachian records extending from Morocco to England) suggests a distribution pattern mirroring that of *Ps. (Ps.) dentatus*, thus a northward migration may have occurred (however see p. 76).

7. DESCRIPTION OF ECOLOGY

Ps. (Ps.) veyrasensis is quite common in the condensed ironshot lumachelle (Angulata zone) of the northern Rhone basin where it attains a maximum height of 27 mm (DM). The diverse associated fauna includes Entolium (E.) lunare, Pinna, Plicatula and Cardinia. In the Hettangian/Sinemurian of Sicily, GEMMELLARO (1878) records 23 specimens of Ps. (Ps.) veyrasensis (H_{max}: 20) from limestones with a diverse neritic fauna dominated by gastropods, the bivalve 'Modiola', and the brachiopods Spiriferina and Rhynchonella. From the same area DI STEFANO (1886) records Ps. (Ps.) veyrasensis from an unspecified horizon in the Trias/L. Lias. 6 specimens (BM L92958-63) labelled 'Jamesoni zone, Sicily' may have been the basis for DI STEFANO's record and allow a more accurate stratigraphic positioning since they are named 'P.' Seguenzae, his synonym for Ps. (Ps.) veyrasensis (see Section 4). DI STEFANO describes an associated fauna consisting mainly of ammonites, spiriferid, terebratulid and rhynchonellid brachiopods and the bivalves Entolium (E.) lunare, Oxytoma, Pinna, Plicatula, Modiolus and Pholadomya.

In the U. Pliensbachian of Morocco *Ps. (Ps.) veyrasensis* occurs in reefal deposits (fauna p. 76) where it reaches a height of ca. 30 mm (DUBAR, 1948). *Ps. (Ps.) dentatus* is a notable associate, as it is in non-reefal micrites in N. Africa and the Rhone Basin and in locally sandy condensed chamosite oolites of the Spinatum zone in Northamptonshire, Oxfordshire and Somerset (fauna p. 76) in which *Ps. (Ps.) equival*vis is a relatively rare species compared to similar contemporaneous deposits further north. The maximum height of *Ps. (Ps.) veyrasensis* in the English occurrences is 24.5 mm (SM J40211) but an isolated specimen from the U. Pliensbachian of Normandy has a height of 74.5 mm (GPIG). Other than where indicated above *Ps. (Ps.) veyrasensis* is a rare species. The limited available data suggests that it is more common in the southern parts of its geographic range.

8. INTERPRETATION OF ECOLOGY

Ps. (Ps.) veyrasensis occurs in much the same sedimentary and faunal associations as *Ps. (Ps.) dentatus* thus a similar ecological interpretation can be applied (see p. 76). The fact that the species often co-occur might be adduced to be further evidence for the view (see p. 60) that they in fact constitute polymorphs of the same species. However, the fact that morphs attributable to *Ps. (Ps.) veyrasensis* are unknown after the U. Pliensbachian while those attributable to *Ps. (Ps.) dentatus* are found in the M. Jurassic is difficult to interpret on this basis. Nevertheless the subtle ecological difference which presumably prevents inter-specific competition remains to be demonstrated.

9. FUNCTIONAL MORPHOLOGY

Since *Ps. (Ps.) veyrasensis* is identical to *Ps. (Ps.) dentatus* in almost all aspects of morphology a similar mode of life can be inferred (see pp. 76, 77). Whether they are considered as polymorphs or separate species, a functional explanation for the difference in number of plicae in the two forms is difficult to envisage. Any saving in weight leading to improved swimming ability through the lower number of plicae in *Ps. (Ps.) veyrasensis* would have been offset by the reduced shell strength and stiffness incurred through the longer plicae had no functional significance but was controlled by a pleiotropic gene which also coded for a selectively significant physiological difference. Small differences in the mean number of ribs in closely related Recent species of *Cardium* have been accounted for in a similar way (RUSSELL, 1972).

10. ORIGINS AND EVOLUTION

Ps. (Ps.) veyrasensis almost certainly evolved from *Ps. (Ps.) dentatus* but since there is no evidence for heterochrony, speciation presumably involved a major change in the genome. There is a strong suggestion that *Ps. (Ps.) veyrasensis* arose sympatrically in the Rhone basin during the Angulata zone.

The apparent stenotopy of *Ps. (Ps.) veyrasensis* (see Section 8) combined with phyletic increase in height from 27 mm (Hettangian) to 74.5 mm (U. Pliensbachian) indicates the prevalence of 'K' selection for increased trophic efficiency (GOULD, 1977).

The post U. Pliensbachian extinction of the species almost certainly relates to the widespread development of unfavourable bituminous shale facies in the L. Toarcian.

Subgenus ECHINOPECTEN BRASIL 1895

Type species. OD; BRASIL 1895, p. 12; *Pecten barbatus* J. SOWERBY 1819, p. 53, pl. 231; Aalenian, Normandy.

AMENDED DIAGNOSIS

RV generally flatter than LV and bearing long, depressed spines. Jur. (Toar.-Baj.), Eu., S. Am.

DISCUSSION

HERTLEIN (1969: N372) contended that *Ps. (Echmopecten)* could be traced back to the Hettangian. This may be a result of the inclusion of '*Pecten' pollux* D'ORBIGNY within the subgenus. Although the latter has spines on the right valve, the presence of similar ornament on the left valve is unlike the type species. There is no other evidence to suggest that the species are related and '*P.' pollux* is in fact almost certainly descended from a species of *Chlamys*, within which genus it is therefore included. The stratigraphic range of *Ps. (Echinopecten)* is consequently herein regarded as Toarcian – L. Bajocian.

Pseudopecten (Echinopecten) barbatus (J. SOWERBY 1819) Pl. 2, Figs. 15–18; text figs. 64–66

Synonymy

- 1819 Pecten barbatus sp. nov; J. SOWERBY, p. 53, pl. 231.
- ? 1833 Pecten barbatus J. SOWERBY; GOLDFUSS, p. 48, pl. 90, fig. 11.
- 1850 Pecten barbatus J. SOWERBY; D'ORBIGNY, v. 1, p. 284.
- v* 1850 *Pecten erebus* sp. nov; D'ORBIGNY, v. 1, p. 284 (BOULE, 1910, v. 4, p. 68).
 - 1858 Pecten barbatus J. SOWERBY; OPPFL, p. 420.
 - 1867 Pecten barbatus J. SOWERBY; WAAGEN, p. 631.
 - 1868 Pecten Coquandi sp. nov. JAUBERT, p. 235.
 - 1874 Pecten barbatus J. SOWERBY; DUMORTIER, p. 199, pl. 44, fig. 6, p. 310, pl. 42, fig. 5.
 - 1886d Pecten limpus sp. nov; DE GREGORIO, p. 21, pl. 13, fig. 7.
 - 1886 Pecten barbatus J. SOWERBY; ROTHPLETZ, p. 36.
 - 1893 Pecten cfr. barbatus J. SOWERBY; BOTTO-MICCA, p. 174.
 - 1895 Pecten (Echinopecten) barbatus J. SOWERBY; BRASIL, p. 12.
 - 1899 Pecten barbatus J. SOWERBY; GREPPIN, p. 120, pl. 12, fig. 5.
 - 1911 Pecten erebus D'ORBIGNY; ROLLIER, p. 266.
 - 1916 Aequipecten barbatus (J. SOWERBY); RICHARD-SON, pp. 473, 497, 498, 513, 515.
 - 1917 Aequipecten barbatus (J. SOWERBY); PARIS and RICHARDSON, p. 521.
 - 1927 Aequipecten barbatus (J. SOWERBY); RICHARD-SON, pp. 53, 57.
 - 1929 Pecten (Aequipecten) barbatus J. SOWERBY; LANQUINE, pp. 199, 300.
 - 1936 Aequipecten barbatus (J. SOWERBY); DECHAS-EAUX, p. 58.
 - 1950 Chlamys (Aequipecten) barbata (J. SOWERBY); CHANNON, p. 247.

Lectotype of *Pecten barbatus* J. SOWERBY 1819, p. 53, pl. 231 herein designated; BCM C 2281.1 (the specimen depicted in the lower two figures of J. SOWERBY's pl. 231); Inferior Oolite (Aalenian/Bajocian/pars Bathonian), England (see p. 81). Paralectotype; BCM C 2281.2 (the specimen depicted in the upper figure of SOWERBY's pl. 231); also Inferior Oolite, England.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Orbicular, depressed, transversely striated; rays 14, those upon one valve spinose; spines long, acute, depressed; ears nearly equal.

The spinose valve is the flattest; the striae upon it are sharp, and much elevated upon the sides of the rays, from whence they curve into the bases of the spines, of which there are about 5 to each ray. The rays upon the other valve are convex, equal in width to the space between them, and crossed by less elevated striae than those upon the spinose valve. The sides of both valves, near the ears, are perpendicular and neatly pectinated.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of *Pseudopecten* by the presence of long spines on the right valve.

Text fig. 64: Pseudopecten (Echinopecten) barbatus - height/length.

3. AMENDED DESCRIPTION

Disc sub-orbicular in juveniles becoming sub-ovate, longer than high (text fig. 64), near the maximum height of 52 mm (ENSM). Umbonal angle very variable (text fig. 65) but increasing during ontogeny to produce concave dorsal margins. Disc flanks moderately high and ornamented with vertical striae (Pl. 2, Fig. 18).

Equilateral; inequivalve, left valve moderately convex, right valve almost flat.

Intersinal distance greater in left valve than right. Moderately large byssal notch in right valve becoming relatively smaller during ontogeny.

Auricles well demarcated from disc, moderate in size, anterior slightly larger than posterior. Junction with hinge line 90°. Anterior auricle of right valve meeting disc at an acute angle. Posterior auricle of right valve and both auricles of left valve meeting disc at an acute angle. All auricles ornaniented with pronounced comarginal striae. Hinge line of right valve bearing dorsally directed spines up to 5 mm in length, spaced at intervals of 2–3 mm (Pl. 2, Fig. 17).

Text fig. 65: Pseudopecten (Echinopecten) barbatus – height/umbonal angle.

Exterior of both valves exhibiting 13–14 radial plicae, usually 14 on right valve, 13 on left. Plicae equal in width to sulci, angular on right valve, rounded on left. On left valve both plicae and sulci traversed by comarginal striae (Pl. 2, Fig. 16). On right valve only flanks of plicae bearing comarginal ornament but latter more pronounced than on left valve (Pl. 2, Fig. 17). At shell heights above about 20 mm plicae on right valve also ornamented with ventrally directed spines up to 10 mm in length, usually spaced at intervals of about 5 mm (Pl. 2, Fig. 17).

Plicae rectilinear in form on shell interior. Shell thickness moderate.

4. DISCUSSION

Of the two syntypes of 'Pecten' barbatus J. SOWERBY in the BCM, the bivalved specimen (C2281.1) is herein selected as lectotype and the other specimen (C2281.2), a right valve seen from the interior, becomes, ip so facto, the paralectotype. The figure of 'P.' barbatus J. SOWERBY; GOLDFUSS differs markedly from the species described in Section 3 by exhibiting 19 plicae and high H/L and H/UA ratios (1). This may, however, be due to a draughting error and in the absence of the original (apparently destroyed during the 2nd. World War) it is impossible to say whether GOLDFUSS' hypodigm differed from that of J. SOWERBY, and thus whether his use of 'P.' barbatus should be excluded from the synonymy.

The sole observed syntype of '*P*.' *erebus* D'ORBIGNY (MNO 2624A; Pl. 2, Fig. 15; 2) from the Bajocian, is a steinkern showing the impression of 14 plicae which are rectilinear in form. In spite of the absence of the diagnostic external spines this feature aligns '*P*.' *erebus* with *Ps.* (*Ec.*) *barbatus* because no other Bajocian pectinids with plicae of this shape and number are known.

No supporting figure was provided in the erection of 'P.' Coquandi JAUBERT. This species, from the Toarcian of Provence, was said to differ from 'P.' barbatus by the paucity of spines on some parts of the shell. Since this is a feature of the left valve and early ontogenetic stages of the right valve in J. SOWERBY's species, JAUBERT's diagnosis is inadequate. In fact, LANQUINE (1929) has subsequently examined the latter's syntypes and pronounced them to be inseparable from J. SOWERBY's species.

The figure of 'P.' *limpus* DE GREGORIO apparently depicts a specimen of *Ps. (Ec.) barbatus* whose spines have been removed by abrasion.

5. STRATIGRAPHIC RANGE

Ps. (Ec.) barbatus first occurs, albeit rather rarely, in the Toarcian of Provence (JAUBERT, 1868; LANQUINE, 1929), the Rhone basin (DUMORTIER, 1874) and possibly N. Italy (DE GREGORIO, 1886d). The earliest records appear to be from the Bifrons zone (L. Toarcian). Subsequently the species becomes locally common in the Aalenian and L. Bajocian. BM 66826, from the Laeviuscula zone, is the latest unequivocal zonally defined record of Ps. (Ec.) barbatus. However, PARIS and RICHARDSON (1917) considered that the specimen herein designated as lectotype (see Section 4) was, by the evidence of the matrix, probably derived from the Sauzei zone of Dundry, near Bristol. It may therefore be that some of the many museum specimens labelled 'Inferior Oolite' from this and other localities in S. England are also derived from the Sauzei zone. It seems unlikely that any specimens are derived from later parts of the Bajocian.

6. GEOGRAPHIC RANGE

Ps. (Ec.) barbatus is unknown outside Europe. Within Europe (text fig. 66) its distribution is patchy and largely restricted to S. England and France. This is probably due to the localised development of the appropriate sedimentary facies (see Section 8). There is some evidence for a migration from an initial centre in S. France. Unequivocal Toarcian records are limited to the latter area. Subsequent records from the Opalinum zone of the Aalenian also include specimens from N. Italy (BOTTO-MICCA, 1893) and Dorset (RICHARDSON, 1927). However, Ps. (Ec.) barbatus did not spread into northern Europe in numbers until a later date, despite the widespread development of the appropriate sedimentary facies. Thus the Concavum zone marks the first occurrence of numerous specimens in Normandy (BRASIL, 1895) while Ps. (Ec.) barbatus did not occur widely in S. England until the Discites zone of the L. Bajocian (PARIS and RICHARDSON, 1917).

7. DESCRIPTION OF ECOLOGY

In the Toarcian and Aalenian of Provence *Ps. (Ec.) barbatus* is found in coarse, occasionally sandy, ferruginous limestones containing chert nodules. Associated faunal elements are predominantly terebratulid and rhynchonellid brachiopods although gastropods and the bivalves *Propeamussium (P.) laeviradiatum, Entolium (E.) corneolum, Plagiostoma, Gervillia, Modiolus, Gryphaea, Astarte, Pholadomya* and *Pleuromya* also occur (Lanquine, 1929). *Ps. (Ec.) barbatus* occurs with a similar fauna (to which is added *P. (P.) pumilum)* in the thin, partly phosphatised, and locally conglomeratic limestones of the Aalenian (Concavum

Text fig. 66: Pseudopecten (Echmopecten) barbatus - European distribution.

zone) in Normandy (BRASIL, 1895). The species is absent from deposits of the same age in S. Germany which are developed as an expanded shale sequence passing upwards into sandstones and chamosite oolites.

In the Laeviuscula zone (L. Bajocian) of Provence Ps. (Ec.) barbatus is quite common and occurs with a fauna similar to that described above (with the addition of Ctenostreon) in hard ferruginous limestones. The fossils are heavily corroded and phosphate coated, particularly at a hardground horizon where glauconite and limonite mineralisation has also taken place (LANQUINE, 1929). Deposits of similar age in S. England (Discites-Sauzei zones) are developed as condensed ironshot sandy limestones locally containing exogenous limestone pebbles. Ps. (Ec.) barbatus is quite common and P. (P.) laeviradiatum is a frequent associate in a fauna much the same as that from Provence (RICHARDSON, 1916). Contemporaneous deposits in S. Germany consist of condensed marly oolites from which Ps. (Ec.) barbatus has vet to be recorded. The species is also absent from the deep water pelagic limestones of the peri-Mediterranean region. The only records from the latter area are from Provence (see above) and the Aalenian of the Italian Alps (DE GREGORIO, 1886d; BOTTO-MICCA, 1893) where a few specimens have been found in condensed deposits, probably formed on a submarine rise (fauna p. 31). The few other records of *Ps. (Ec.) barbatus* appear also to be from condensed facies.

8. INTERPRETATION OF ECOLOGY

Ps. (Ec.) barbatus frequently occurs with the stenotopic pectinid *Propeanussium (P.) laeviradiatum* and reference should be made to the analysis presented for this species (p. 31) for a complementary and more detailed interpretation of synecology.

The coarse-grained, condensed deposits in which *Ps. (Ec.) barbatus* usually occurs are indicative of high energy conditions with a low sediment input. Corroded fossils and local non-sequences provide evidence of active erosion, perhaps as a result of storms. The extensive mineralisation associated with slow deposition probably led to the formation of a firm substrate and may also have promoted the local development of hardgrounds.

The associated benthic fauna is characterised by adaptations for stability in the face of high environmental energy. The adaptations of the epifauna are discussed on p. 31. Less common infaunal elements are characteristically deep burrowing bivalves (*Pleuromya*, *Pholadomya*) which were probably able to avoid the risk of exhumination by living below the base of storm erosion. Genera which probably lived semiinfaunally (*Plagiostoma*, *Gervillia*, *Modiolus*) can be adduced, by analogy with Recent analogues (STANIFY, 1970), to have attained stability by virtue of a strong byssus.

The absence of Ps. (Ec.) barbatus from condensed oolites, such as are developed in the Aalenian and Bajocian of S. Germany, is probably because the shifting nature of such sediments created an unfavourable environment. The development of spinose ornament on the right valve was probably made at the expense of swimming ability (see Section 9), thus occupation of a mobile substrate would have rendered Ps. (Ec.) barbatus extremely susceptible to sediment swamping. Moreover, loose ooliths would have probably afforded a poor anchorage for the spines. Deep water pelagic limestones were probably unfavourable to Ps. (Ec.) barbatus as a consequence of their soupy nature at the time of deposition, leading to the danger of sediment swamping. The absence of Ps. (Ec.) barbatus from expanded coarse-grained sequences (as in the Aalenian of S. Germany) indicates that the favourability of condensed coarse-grained sediments for the species lay in their low turbidity rather than high energy depositional environment.

The usual occurrence of *Ps. (Ec.) barbatus* in only moderate numbers with a high diversity fauna suggest that it was an equilibrium species (LEVINTON, 1970).

9. FUNCTIONAL MORPHOLOGY

The following features are paradigmatic for a bivalve living in a high energy environment with a reclining habit when adult.

- 2. Thick shell
- 3. Strongly ornamented lower valve
- 4. Smooth upper valve
- 5. Low convexity

Of these, *Ps. (Ec.) barbatus* exhibits features 3, 4 and, to some extent, 5. The strongly spinose and comarginally striated right valve represents, in bioeconomic terms, an efficient means of gripping the substrate in the high energy environments occupied by the species. Presumably environmental energy was never so high as to also necessitate the development of a large thick shell for stability whilst reclining.

The possibility that the spines might represent a 'snow-shoe' adaptation such as has been suggested for *Spondylus* in the Chalk by CARTER (1972) can be ruled out because the substrates occupied by *Ps. (Ec.) barbatus* were almost certainly firm (see Section 8). Furthermore the relatively small size of the spines would have tended to localise rather than spread the weight of the shell. In fact P. WOODROOF (pers. comm., 1977) reports that *Spondylus* is more common in the Cretaceous in coarse grained firmground deposits rather than the typical Chalk lithology which is indicative of a soupy substrate at the time of deposition.

The moderately large juvenile byssal notch indicates that stability was attained through byssal fixation early in ontogeny. Spines are absent in the juvenile and the size at which these are first secreted (H: 20) may correspond to that at which current-generated overturning moments became too great for a byssus to be profitably employed.

Although the development of both dorsally directed spines on the hinge and ventrally directed spines on the disc must have been highly effective in providing stability against currents from a wide variety of directions, it must also have severely impaired swimming ability, such as might have been required to escape potential predators or sediment swamping (see Section 8). Any attempt to move dorsally (the 'escape response') or ventrally (normal swimming) would have lodged one or other set of spines even more firmly into the sediment and thus prevented 'take-off'. Moreover, even if the animal was able to rise from the sea-floor the spines would have still inhibited swimming by greatly increasing the frictional drag. Ontogenetic increase in umbonal angle indicates an attempt to prolong swimming ability beyond the juvenile stage. However, it seems likely that late in ontogeny attempted predation was resisted by a 'siege' policy to which the well developed plicae contributed by increasing the strength and stiffness of the shell.

10. ORIGINS AND EVOLUTION

The most likely ancestor for *Ps. (Ec.) barbatus* is *Ps. (Ps.) veyrasensis.* The only major difference between the species is the existence of spines on the right valve in the former. There is however no evidence in the form of ancestral allometry to suggest that the appearance of spines could have been due to the relatively simple process of heterochrony and transspecific evolution may therefore have involved a major change in the genome. There is a gap of three zones between the first and last respective appearances of the species and this suggests that speciation took place outside the main range of the ancestor (Europe) in accordance with the allopatric model. No phyletic trends are apparent in *Ps. (Ec.) barbatus* although a rigorous assessment of the possibility of size change is precluded by the imprecise stratigraphic localisation of most nuseum specimens. The largest specimen (H: 52, ENSM) is labelled 'Inferior Oolite' (Aalenian/Bajocian).

The post-Sauzei zone extinction of *Ps. (Ec.) barbatus* has no convincing deterministic explanation. Locally, as in the L. Bajocian of Provence, its disappearance is correlated with the onset of unfavourable marl deposition. However, at least in Britain, apparently suitable condensed facies persist into the U. Bajocian, where *Ps. (Ec.) barbatus* is unknown.

Genus SPONDYLOPECTEN ROEDER 1882

Type species. M; ROEDER 1882, p. 52; *Pecten* cf. *erinaceus* BUVIGNIER; ROEDER 1882, p. 52, pl. 2, figs. 4a–c; Oxfordian, Alsace.

AMENDED DIAGNOSIS

Sculptured with number of strong, usually rounded, radial plicae, spinose in some species; byssal notch deep; cardinal area of RV with narrow median groove (similar to *Spondylus*) which continues to ligamental pit; hinge of RV with 2 prominent thick teeth which fit into corresponding sockets in LV. (Apparently some species are attached to tip of RV.) Jur. (Aalen. [?Hettang.]-Tithon.), Eu., Afr., Asia.

DISCUSSION

In his diagnosis HERTLEIN (1969: N364–365) stated that spines were restricted to the left valve in *Spondylopecten*. All the species here described seem to have had spines on both the left and right valves. HERTLEIN considered that the genus was restricted to reefs but the results of work presented herein suggest that this was not so. The stratigraphic and geographic range given by HERTLEIN is also extended herein.

Within the toothed Jurassic pectinids two distinct subgroups may be recognised. One has numerous rounded plicae bearing 2-4 rows of spines while the other has fewer, more angular plicae bearing single rows of spines. There is no direct evidence to suggest that one group has evolved from the other and the fact that teeth have been acquired polyphyletically in various Cenozoic 'Chlamys' species (DE LORIOL, 1901; ARK-KELL, 1935a) indicates that there are only grounds of convenience for uniting the two groups of toothed Jurassic pectinids within the same genus. They are herein separated at the subgeneric level; the former group being referred to S. (Spondylopecten) and the latter to S. (Pleisiopecten). Plesiopecten MUNIER-CHALMAS was considered by HERTLEIN (1969) to be synonymous with Spondylopecten ROEDER at the generic level. However, apart from the obvious differences in form of the type species (respectively typical and sole species of the two groups delineated above), it has been shown by ARKELL (1935a) that ROEDER's original conception of Spondylopecten did not include the type species of Plesiopecten (cf. p. 90). There are thus ample grounds for employing Spondylopecten and Plesiopecten as separate subgeneric categories.

Subgenus PLESIOPECTEN MUNIER-CHALMAS 1887

Type species. M; MUNIER-CHALMAS in P. FISCHER 1887, p. 994; *Pectinites subspinosus* Schlotheim 1820, p. 223; U. Jurassic, S. Germany.

AMENDED DIAGNOSIS

Spondylopecten with angular plicae bearing only one row of spines. Jur. (Aalen. [?Hettang.] - Tithon.), Eu., Afr., Asia.

DISCUSSION

HERTLEIN (1969) did not recognise *Plesiopecten* as a discrete entity and therefore provided no diagnosis.

Jurassic representatives of *S. (Plesiopecten)* cannot be subdivided so all are herein referred to one species, *S. (Pl.) subspinosus.*

Spondylopecten (Plesiopecten) subspinosus (SCHLOTHEIM 1820) Pl. 3, Figs. 1–5, 7, ?Fig. 6; text figs. 67–72.

Synonymy

: 1020 D

v~ 1820	Pectimites subspinosus sp. nov; SCHLOTHEIM
	p. 223.
? 1833	Pecten novemplicatus sp. nov; MUNSTER in GOLD
	FUSS, p. 45, pl. 100, fig. 3.
v 1833	Pecten subspinosus SCHLOTHEIM; GOLDFUSS
	p. 46, pl. 100, fig. 4.
(?) 1850	Pecten novemplicatus MUNSTER; D'ORBIGNY
	v. 1, p. 257.
v° 1850	Pecten Hedonia sp. nov; D'ORBIGNY, v. 1, p. 28-
	(BOULE, 1910, v. 5, p. 68, 1909, v. 4, pl. 20
	figs. 15–17).

- v* 1850 Lima Bellula sp. nov; D'ORBIGNY, v. 1, p. 371 (BOULE, 1927, v. 16, p. 130, 1928, v. 17, pl. 6, fig. 1).
 - 1850 Pecten subspinosus SCHLOTHEIM; D'ORBIGNY, v. 1, p. 373.
- v^{*} 1850 Pecten Orontes sp. nov; D'ORBIGNY, v. 1, p. 373 (BOULE, 1927, v. 16, p. 131, 1928, v. 17, pl. 6, figs. 3, 4).
 - 1852 Pecten subspinosus SCHLOTHEIM; QUENSTEDT, p. 507, pl. 40, fig. 44.
- ? 1855 Pecten aequiplicatus sp. nov; TERQUEM, p. 323, pl. 23, fig. 5.
- 1858 Pecten Bouchardi sp. nov; OPPEL, p. 492.
- v 1858 Pecten subspinosus SCHLOTHEIM; QUENSTEDT, p. 500, pl. 67, figs. 3, 4, p. 754, pl. 92, figs. 5, 6.
- 1862 Pecten subspinosus SCHLOTHEIM; THURMANN and ÉTALLON, p. 251, pl. 35, fig. 4.
- ? 1862 Pecten Sarmerensis sp. nov; Étallon in Thur-Mann and Étallon, p. 259, pl. 36, fig. 11.
- 1863 Pecten subspinosus SCHLOTHFIM; LYCETT, p. 113, pl. 40, fig. 14.
- (?) 1865 Pecten aequiplicatus TERQUEM; TERQUEM and PIETTE, p. 102.
- 1867 Pecten subspinosus SCHLOTHEIM; LAUBE, p. 10.
- ? 1878 Pecten lottii sp. nov; GEMMELLARO and DI BLASI in GEMMELLARO, p. 389, pl. 20, figs. 1, 2.
- 1878 Pecten Oromedon sp. nov; DE LORIOI, p. 160, pl. 22, fig. 21.
- v 1883 Pecten subspinosus SCHLOTHEIM; BOEHM, p. 612, pl. 67, figs. 40, 41.
- 1888 Pecten Bouchardi OPPEL; SCHLIPPE, p. 134, pl. 2, fig. 13.

- 1893 Chlamys subspinosus (Schlotheim); Siemir-Adzki, p. 118.
- 1894 Pecten subspinosus SCHLOTHEIM; DE LORIOL, p. 42.
- 1901 Pecten (Plesiopecten) subspinosus SCHLOTHEIM; DE LORIOL, p. 105.
- 1903 Pecten subspinosus SCHLOTHEIM; REMES, p. 203.
- non 1904 Chlamys cf. aequiplicata (TERQUEM); COSSMANN, p. 503, pl. 16, fig. 15.
 - 1904 Pecten (Plesiopecten) subspinosus SCHLOTHEIM; DE LORIOL, p. 230, pl. 23, figs. 5, 6.
 - 1905 Pecten subspinosus SCHLOTHFIM; PERON, p. 215.
 - 1905 Pecten lykosensis sp. nov; KRUMBECK, p. 103, pl. 4, figs. 1a-c.
 - 1905 Pecten (Chlamys) oromedon DE LORIOL; KILIAN and GUFBHARD, p. 817.
 - 1910 Pecten subspinosus SCHLOTHEIM; SIMIONESCU, p. 13, pl. 2, fig. 13.
 - 1910 Plesiopecten subspinosus (SCHLOTHEIM); LISSA-JOUS, p. 362, pl. 9, fig. 20.
 - 1910 Chlamys (Aequipecten) Hedonia (D'ORBIGNY); Cossmann, p. 12, pl. 1, figs. 14–17.
 - 1912 Chlamys (Aequipecten) Bouillerieri sp. nov; Cossmann, p. 2, pl. 1, figs. 5, 6.
 - 1916 Pecten (Plesiopecten) subspinosus SCHLOTHEIM; DOUVILLÉ, p. 74, pl. 9, figs. 6, 6a.
 - 1916 Aequipecten bouchardi (OPPEI); RICHARDSON, pp. 494, 505, 507, 508, 511.
 - 1916 Aequipecten bouchardi (OPPEL); PARIS and RICHARDSON, p. 522.
 - 1920 Pecten subspinosus SCHLOTHEIM; FAURE-MAR-GUERIT, p. 56.
 - 1923 Plesiopecten fusciacensis sp. nov; LISSAJOUS, p. 163, pl. 30, figs. 7, 7a, 8, 9.
 - 1926 Spondylopecten subspinosиs (SCHLOTHEIM); STAE-SCHE, p. 107, pl. 4, fig. 9.
 - v 1926 Spondylopecten Bouchardi (OPPEL); STAESCHE, p. 108, pl. 4, fig. 8.
 - 1929 Aequipecten Bouchardi (OPPEL); LANQUINE, p. 323.
 - 1931 Pecten subspinosus SCHLOTHEIM; YIN, p. 122.
 - 1932 Spondylopecten subspinosus (SCHLOTHEIM); FRENTZEN, p. 56.
 - 1935a Plesiopecten subspinosus (SCHLOTHEIM); ARKELL, p. 364, pl. 53, figs. 4, 5.
 - ? 1936 Aequipecten aequiplicatus (TERQUEM); DECHAS-EAUX, p. 41.
 - 1936 Spondylopecten Hedonia (D'ORBIGNY); DECHAS-EAUX, p. 65.
 - 1936 Spondylopecten Bouchardi (OPPEL); DECHAS-EAUX, p. 65.
 - v 1936 Spondylopecten subspinosus (SCHLOTHEIM); DE-CHASEAUX, p. 66, pl. 8, fig. 9.
 - 1938 Plesiopecten subspinosus (SCHLOTHEIM); WEIR, p. 50, pl. 3, fig. 18.
 - 1952 *Chlamys (Plesiopecten) subspinosa* (SCHLOTHEIM); Cox, p. 18, pl. 1, figs. 9–12.
 - 1964 Plesiopecten bouchardi (OPPEL); WELLNHOFER, p. 39, pl. 1, fig. 27.
 - ? 1973 Chlamys (Aequipecten) acquiplicata (TERQUEM); LENTINI, p. 27, pl. 15, fig. 3.
 - v 1975 Spondylopecten subspinosus (SCHLOTHEIM); YAM-ANI, p. 59, pl. 3, figs. 3–6.

Lectotype of *Pectinites subspinosus* SCHLOT-HEIM 1820, p. 223 designated herein; HM MB-M. 25.4; Pl. 3, Fig. 1 herein; H: 13.5, L: 13.5, UA: 90, PL: 12; Hornstein (?Kimmeridgian), Grumbach bei Amberg (Franconia). Paralectotypes; HM MB-M. 25.1– 3,5–7 (6 specimens).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Mehrere Exemplare in Hornstein, gleichfalls von Amberg (12 Ex.).

In der Form dem vorhergehenden ziemlich ähnlich nur viel kleiner, und höchstens nur einen Zoll im Durchmesser erreichend, mit verhältnismäßig ziemlich breiten, mit gekörnten Querstrichen versehenen Ohren. Von flacherer Wölbung als der vorhergehende. Beyde Hälften gleichförmig gewölbt, die Rippen stark hervorspringend, spitzwinklich zulaufend, und mit kleinen Dornen besetzt. Die sehr feinen eng zusammen stehenden erhabenen Querrippen sind nur in den Zwischenfurchen sichtbar, und veranlassen, daß man Einkerbungen oder vertiefte Punkte in den Zwischenfurchen wahrzunehmen glaubt. Ein darunter befindliches zum Theil verkieseltes Exemplar ist unter den Hornsteinversteinerungen merkwürdig. Er scheint in der dortigen Gegend ziemlich häufig zum Vorschein zu kommen."

2. AMENDED DIAGNOSIS

As for diagnosis of subgenus (p. 84).

Text fig. 67: Spondylopecten (Plesiopecten) subspinosus – height/length.

3. AMENDED DESCRIPTION

Disc sub-orbicular at all ontogenetic stages (text fig. 67), maximum height 27 mm (BM L68240). Umbonal angle very variable (text fig. 68) but increasing slowly during ontogeny to produce slightly concave dorsal margins. Disc flanks high.

Equilateral, umbones projecting slightly beyond hinge line; equivalve, convexity variable, moderate to high, increasing with approximate isometry (text fig. 69).

Intersinal distance greater in left valve than right. Moderate byssal notch in right valve becoming relatively smaller during ontogeny.

Auricles well separated from disc, moderate in size, anterior larger•than posterior. Anterior auricle of right valve

Text fig. 68: Spondylopecten (Plesiopecten) subspinosus - height/umbonal angle.

meeting hinge line and disc at 90°, anterior auricle of left valve meeting hinge line and disc at an acute angle. Posterior auricles of both valves meeting hinge line and disc at an acute angle. All auricles sloping from umbo towards opposite valve (Pl. 3, Fig. 4) at a maximum angle of 20°. Anterior auricle of right valve ornamented with four radial costae.

Text fig. 69: Spondylopecten (Plesiopecten) subspinosus – convexity/height.

Exterior of both valves ornamented with between 10 and 13 angular radial plicae (text fig. 70), equal in width to sulci; usually one more plica in right valve than left. Plicae poorly defined near anterior and posterior margins. Large specimens may develop additional intercalary plicae (THURMANN and ÉTALLON, 1862; YIN, 1931). Crests of plicae bearing ventrally directed spines up to 2 mm in length and spaced at intervals of about 2 mm (Pl. 3, Fig. 3). Sulci traversed by strong comarginal striae (Pl. 3, Fig. 3) fading out on the plical flanks and towards the ventral margins of large specimens (Pl. 3, Fig. 7). Plical cross-section rectilinear and reduced in amplitude on interior of shell (Pl. 3, Fig. 5); shell thickness high.

Cardinal area of right valve bearing two peg-shaped crura (Pl. 3, Fig. 2), anterior larger than posterior and vertically striated; corresponding sockets in left valve.

Text fig. 70: Spondylopecten (Plesiopecten) subspinosus – frequency distribution for number of plicae on right valve.

4. DISCUSSION

The 12 syntypes originally described by SCHLOTHEIM (1820) as '*Pectinites' subspinosus* were subsequently added to such that the SCHLOTHEIM collection (HM) now contains 18 specimens under this specific name (Dr. J. HELMS, pers. comm., 1978). The specimens are variably preserved and it is not certain which constitute the syntypes. However, all appear to be referable to the species described in Section 3 and this fact together with the unambiguousness of the description (see Section 1) can leave little doubt as to SCHLOTHEIM's hypodigm. Accordingly one of the 18 specimens (HM MB-M. 25.4; Pl. 3, Fig. 1) is herein designed as lectotype and a further 6 specimens (HM MB-M. 25.1–3, 5–7) are selected as paralectotypes.

The single observed type of 'Lima' Bellula D'ORBIGNY (MNO 3737) and the sole observed type of 'P.' Hedonia D'ORBIGNY (MNO 2421) with 12 and 13 plicae respectively, together with the two syntypes of 'P.' Orontes D'ORBIGNY (MNO 3766) with 11 and 13 plicae, all fall within the range of plical variation in S. (Pl.) subspinosus and can be distinguished on no other count. Similarly, 'P.' lykosensis KRUM-BECK and 'Chlamys' ('Acquipecten') Bouillerieri COSMANN, both with 11 plicae, cannot be accorded a specific distinction.

Although the figure of 'P.' aequiplicatus TERQUEM shows 15 plicae and is similar to Pseudopecten (Ps.) veyrasensis the text specifies 12 plicae and spinose ornament as is characteristic of S. (Pl.) subspinosus. Some subsequent applications of TERQUEM's specific name by authors who may have examined the type material appear to bear out the latter assignation (e. g. LENTINI [1973] for forms with 10 plicae and DECHASEAUX [1936] for forms with 12 plicae and spines). However, Coss-MANN's (1904) usage is for a form with 16 plicae which is probably referable to Ps. (Ps.) dentatus and it is thus conceivable that 'P.' aequiplicatus TERQUEM could represent the extremes of variation in the latter species. Unfortunately discussion of the taxonomic position of 'P.' aequiplicatus is hampered by the fact that the presence or absence of the cardinal crura diagnostic of *Spondylopecten* has yet to be demonstrated in either the specimens cited in the bibliographic references above or in museum specimens from comparable horizons (Lias) examined by the author (however see Section 5). For the same reason the taxonomic position of *'P.' novemplicatus* MON-STER (a species founded on a fragmentary specimen from the Lias which must have originally possessed about 12 plicae) is also uncertain.

'P.' Bouchardi OPPFL was originally erected for forms differing from typical S. (Pl.) subspinosus only by their greater convexity and stronger plicae. STAESCHE (1926), in maintaining a specific distinction, added that such forms were also characterised by wider sulci lacking in comarginal ornament but failed to recognise that all four features are correlates of relatively large size, as is clearly illustrated by his figured specimen (H: 20.9). 'Pl.' fusciacensis LISSAJOUS, crected for large specimens (H_{max}: 27) lacking comarginal ornament in the sulci, is similarly inseparable from S. (Pl.) subspinosus and since the development of intercalary plicae appears to be another correlate of large size (YIN, 1931), 'P.' Sarmerensis ÉTALION cannot be accorded a specific distinction on this basis.

'P.' Oromedon DF LORIOL only differs from S. (Pl.) subspinosus by its more rounded plicae. This is almost certainly the result of abrasion.

'P.' lottii GEMMELLARO and DI BLASI was erected for a single specimen from the L. Lias resembling S. (Pl.) subspinosus in its convexity and Ps. (Ps.) veyrasensis in its number of plicae (15). STAESCHE (1926) has suggested that it may represent a transitional form between the two species (but see Section 10).

5. STRATIGRAPHIC RANGE

None of the small Lias pectinids with approximately 12 plicae whose greater convexity and more angular plicae merit a distinction from Ps. (Ps.) veyrasensis, is seen from the interior. It is therefore impossible to say whether the cardinal crura diagnostic of Spondylopecten are present and thus whether the specimens in fact constitute examples of S. (Pl.) subspinosus. Some of the specimens are devoid of shell (e. g. GPIG 868-4; Pl. 3, Fig. 6) but enough with the remnants of plical spines (e. g. BM L30494) exist to suggest strongly that all are referable to S. (Pl.) subspinosus. Of these, the earliest specimen is from the Hettangian (GPIG). Bibliographic records of possibly conspecific specimens (see Section 4) also extend back to the Hettangian in the E. Paris Basin (TERQUEM, 1855; TERQUEM and PIETTE, 1865; DECHASEAUX, 1936) and the L. Lias in Sicily (GEMMELLARO, 1878; LENTINI, 1973). However, there can be no doubt that if it exists at all, S. (Pl.) subspinosus is a rare species before the M. Jurassic.

Unequivocal Aalenian records are limited to one specimen from the Opalinum zone (BM L41933) and another from the Murchisonae zone (BM unnumbered) of Dorset. However, the species is quite common by the U. Bajocian and in suitable facies (see Section 8) it is found thus in all stages to the U. Tithonian (BOFHM, 1883; REMES, 1903; FAURF-MARGUERIT, 1920; YIN, 1931).

Text fig. 71: Spondylopecten (Plesiopecten) subspinosus - World distribution (Callovian reconstruction).

6. GEOGRAPHIC RANGE

In the M. and U. Jurassic *S. (Pl.) subspinosus* has a geographic range extending south from Europe along the southern shores of Tethys to include about 50° of palaeolatitude (text fig. 71).

Within Europe (text fig. 72) L. Jurassic records are scattered but widespread. However in the M. and U. Jurassic S. (*Pl.*) subspinosus is restricted to those areas which lay north of the Tethyan deep water zone and more locally in the U. Jurassic its numbers are strongly correlated with the development of coral reefs (see Section 8). Nevertheless, only three specimens are recorded by ARKELL (1935a) from apparently suitable coralliferous facies in Cambridgeshire and Yorkshire and this suggests that N. England marked the northern limit of the geographic range of S. (*Pl.*) subspinosus.

7. DESCRIPTION OF ECOLOGY

Potential early records of *S. (Pl.) subspinosus* (see Sections 4, 5) from the Hettangian of Luxembourg (TERQUEM, 1855) and E. France (TERQUEM and PIETTE, 1865; DECHASEAUX, 1936) are derived from sandstones containing abundant gastropods and the bivalves *Cardinia* and *Lima* together with rarer examples of *Chlamys* (*Ch.*) textoria, *Ch.* (*Ch.*) valoniensis, *Pseudopecten* (*Ps.*) equivalvis, Entolium (E.) lunare and *Camptonectes* (*C.*) subulatus.

In the U. Bajocian (Garantiana and Parkinsoni zones) of Somerset and Dorset, *S. (Pl.) subspinosus* occurs quite commonly in brown ferruginous limestones, reaching a maximum height of 23 mm (BM L845528). The associated fauna is abundant and diverse, comprising the bivalves *Pseudomonotis, Limatula, Trichites, Trigonia, 'Ostrea', Pro-*

Text fig. 72: Spondylopecten (Plesiopecten) subspinosus - European distribution.

tocardia and a variety of pholadomyoids together with terebratulid brachiopods, in- and epifaunal gastropods, infaunal echinoids and rare corals (RICHARDSON, 1917).

Sediments of Aalenian/Bajocian age in Normandy also contain *S. (Pl.) subspinosus* but the exact horizon and facies is unknown.

Although widespread, the species does not occur commonly anywhere in Europe during the Bathonian. Rare specimens reaching a maximum height of 27 mm are recorded from the Retrocostatum zone (Aspidoides zone of ARKELL, 1956) of the Mâconnais in a condensed ammonite bed (LISSAJ-OUS, 1923).

S. (Pl.) subspinosus occurs commonly in the condensed ferruginous oolites of the Macrocephalus zone (L. Callovian) in S. Germany and Switzerland (OPPEL, 1858; SCHLIPPE, 1888; STAESCHE, 1926). The maximum size attained is 21 mm (GPIT). Deposits of the same age in Cutch (India) are developed as limestone/shale alternations containing common S. (Pl.) subspinosus in association with S. (S.) palinurus and the 'coarse' and 'intermediate' phenotypes of Ch. (Ch.) textoria. Elsewhere the species is rare in the Callovian but it returns in large numbers in the Oxfordian, particularly to E. France and Switzerland where the stage is frequently developed in reefal facies. S. (Pl.) subspinosus is particularly abundant in the U. Oxfordian of the Yonne where, in addition to the framework of corals and Diceras, there is an abundant associated fauna including the coral-inhabiting S. (S.) palinurus, S. (S.) subpunctatus, Camptonectes (C.) virdunensis and Radulopecten inequicostatus together with the 'coarse' phenotype of Ch. (Ch.) textoria (PERON, 1905). However, S. (Pl.) subspinosus also occurs quite commonly in the L. Oxfordian of the same region which is developed as marls and non-reefal limestones. In similar sediments in the Transversarium zone (U. Oxfordian) of tsere it reaches a height of 27 mm (BM L68420).

S. (Pl.) subspinosus and other species of Spondylopecten are absent from the M. and U. Oxfordian reefs of the Oxford area yet coral/Nerinea-rich facies at a similar palaeolatitude (text figs. 71, 72) in Poland contain common examples of S. (Pl.) subspinosus together with S. (S.) palinurus, S. (S.) globosus, R. inequicostatus and Ch. (Ch.) textoria (SIEMIRADZKI, 1893).

S. (*Pl.*) *subspinosus* is absent from Kimmeridgian coral/*Diceras* facies in the Jura (e. g. CONTEJEAN, 1859) and is likewise absent from coral patch reefs of the same age at La Rochelle (Charente Maritime). Other reef dwelling pectinids are extremely rare at the latter locality although the bivalve fauna is otherwise rich (HALLAM, 1975b).

Tithonian records of *S. (Pl.) subspinosus* are restricted to localised reefal deposits. Thus the species is found in the L. Tithonian of Nattheim (FRENTZEN, 1932) and Neuburg (YAMANI, 1975) in S. Germany; the U. Tithonian of Stramberg in Czechosłovakia (BOEHM, 1883; REMES, 1903), Isère (FAURE-MARGUERIT) and Languedoc (YIN, 1931) in S. France, and also undifferentiated Tithonian in S. France (KILIAN and GUEBHARD, 1905) where it reaches a maximum height of 19 mm. The associated fauna is in all cases rich and diverse and dependant on the locality is made up of various combinations of the reef-dwelling pectinids mentioned above (to which is added *S. (S.) cardinatus)* together with *Plagnostoma*, *Trichites, Gervillella, Diceras* and *Arctostrea*, pleurotomariid and nerineid gastropods, thick shelled terebratulid brachiopods, cidaroid echinoids, crinoids, corals and calcareous sponges. In what are otherwise faunally indistinguishable facies in the L. Tithonian of Sicily, *S. (Pl.) subspinosus* is absent (GEMMELLARO and DI BLASI, 1874; GEMMELLARO, 1875).

8. INTERPRETATION OF ECOLOGY

Both HERTLEIN (1969) and HALLAM (1976) consider Spondylopecten to be an exclusively reef-inhabiting genus. While in the case of S. (Pl.) subspinosus it is undoubtedly true that the species occurs most abundantly in reefal deposits, the data of Section 7 provide good evidence that for at least the pre-Tithonian parts of its range S. (Pl.) subspinosus was not confined to this habitat. All pre-Oxfordian records appear to be from faunally diverse level bottom situations, usually accompanied by fairly high environmental energy. Such facies also contain the largest representatives of the species. The occasional presence of corals and reef-associated Chlamys and S. (Spondylopecten) species might be held to indicate that S. (Pl.) subspinosus was derived from unexposed reefs nearby. However, more coral-rich horizons (e. g. Upper Coral Bed, U. Bajocian, S. England) containing numerous examples of S. (Spondylopecten) are noticeably lacking in S. (Pl.) subspinosus. Moreover, undoubted reefs, such as those of the U. Pliensbachian in Morocco (DUBAR, 1948) and the L. Bajocian in E. France (HALLAM, 1975b) were not colonised. In the former case the absence of the reef-associated 'coarse' phenotype of Ch. (Ch.) textoria (S. (Spondylopecten) had yet to arise) could indicate that a general competitive exclusion by the common Pseudopecten, Lithiotis and Pachyrisma, was in operation. However, in the latter case no such process can be invoked as these forms are absent and the 'coarse' phenotype of Ch. (Ch.) textoria, a frequent associate of S. (Pl.) subspinosus at later horizons, is abundant. Nevertheless, with respect to a general synthesis of habitat range in the Bajocian, it must be admitted that the absence of of S. (Spondylopecten) species (which also occur with the 'coarse' phenotype of Ch. (Ch.) textoria at later horizons) suggests that some special feature of the L. Bajocian reefs in E. France made them unfavourable to Spondylopecten as a whole (see below). Even so, given the foregoing evidence the onus of proof must now pass to those who would still claim that Spondylopecten was an entirely reef-restricted genus.

Reefs were first undoubtedly colonised in the Oxfordian although level bottom environments were also inhabited. Subsequently in the Tithonian, reefs apparently became the sole habitat. The diverse fauna of byssate (S. (Spondylopecten), Ch. (Ch.) textoria, Trichites, Gervillella) and cemented (Diceras, Arctostrea) bivalves attests to the abundance of hard substrates while the luxuriance of the coral growth indicates that the sea was shallow, warm, well oxygenated and of low turbidity.

The absence of *S. (Pl.) subspinosus* from some U. Jurassic reefs within the latitudinal range of the species could perhaps be explained by their particular coral fauna and resultant structure. Personal examination of the in situ L. Kimmeridgian patch reefs near La Rochelle, in which other species of

Spondylopecten are also extremely rare, reveals that they are dominated by sheet and dome-like masses of Isastrea and Thamnasteria which produce a very dense structure. (The same is true of the L. Bajocian reefs in E. France – see above.) As such they could have provided relatively few sites for the kind of nestling habit inferred for Spondylopecten (see Section 9). By contrast, at least in the L. Tithonian reef at Nattheim, there is a dominance of the arborescent Thecosmilia (FRENTZEN, 1932) which could have afforded abundant nestling sites for S. (Pl.) subspinosus and the other common species of Spondylopecten. In addition to its absence at La Rochelle, S. (Pl.) subspinosus is, however, also lacking in the Oxfordian reefs around Oxford and these reefs, apparently within the latitudinal range of S. (Pl.) subspinosus, contain abundant Thecosmilia. Possibly this apparent anomaly may yet be explained as a consequence of some overriding large-scale control on distribution (e.g. environmental stability – see below). However, the presence of S. (Spondylopecten) species and the absence of S. (Pl.) subspinosus from the L. Tithonian reefs in Sicily casts further doubt on the importance of general reef structure in determining the occurrence of Spondylopecten, and the extreme rarity of S. (S.) palinurus at Nattheim also suggests that forms were subject to a more specific control (see p. 96). Unfortunately there are no modern reef-dwelling morphological analogues of S. (Pl.) subspinosus to allow a comparison in micro-habitat preference. The pectinid fauna of Recent reefs appears to be dominated by Chlamys species. of low convexity (WALLER, 1972b).

From the foregoing one may reach the speculative conclusion that *S*. (*Pl.*) subspinosus gradually evolved from being a member of level bottom communities into one confined to the reef habitat and that within the latter there may have been a preference for the more open structures produced by branching corals. Possibly some unpreserved softbodied organism afforded the same niche prior to the occupation of coral reefs since the small convex shell would have been poorly suited to life on the sea floor (see Section 9). The usual occurrence of *S*. (*Pl.*) subspinosus in moderate numbers in a high diversity fauna suggests that it was an equilibrium species (LEVINTON, 1970).

The absence of *S. (Pl.) subspinosus* from fine-grained deposits such as the pelagic limestones of the M. & U. Jurassic in the Tethyan region and the phyllosilicate clays of the Oxfordian and Kimmeridgian in N. Europe suggests strongly that the species was intolerant of turbid waters and soupy substrates. While *S. (Pl.) subspinosus* does occur in limestone/shale (Callovian, Cutch) and limestone/marl (L. Oxfordian, Yonne) sequences, it seems highly likely that the species was restricted to relatively coarse-grained limestones.

The rarity of *S. (Pl.) subspinosus* in the Oxfordian coralliferous deposits of central and northern England (see Section 6) may be simply the result of a temperature dependence. However, HALLAM (1975a) has proposed a multi-component explanation based on stability theory (SANDFRS, 1968, 1969) for the N/S provinciality exhibited by a variety of Jurassic taxa and it could thus be that the general environmental instability resulting from shallower seas, greater seasonal fluctuations in temperature and the more frequent incidence of storms caused the relatively stenotopic *S. (Pl.) subspinosus* to be excluded from high latitudes.

9. FUNCTIONAL MORPHOLOGY

The small adult size and relatively large byssal notch of S. (Pl.) subspinosus indicate that the species could have remained byssate throughout ontogeny. However, the thick, strongly inflated shell is non-paradigmatic for a free-swinging mode of life and in the absence of any downward slope of the hinge line from posterior to anterior, the high convexity of the right valve renders the species poorly adapted to tight fixation on a single planar surface. Suitably pitted surfaces could have provided nestling sites for the right valve but the similarity in shape and ornament of the valves suggests that both were exposed to the same environment. Thus it is proposed that S. (Pl.) subspinosus lived tightly fixed between two or more surfaces with the ventrally directed spines gripping the substrate and adding to the effect of a heavy shell and byssus in providing stability against the actions of currents, waves and predators. Under such circumstances effective fixation could only have been achieved by a close matching of shell convexity to width of 'cavity'. This might have resulted from either of two strategies:

1. Developmental flexibility in convexity to suit the micro-habitat in which the spat initially settled.

2. Selection by the spat of micro-habitats of appropriate size and shape.

Some evidence for the former is provided by the variation in convexity of S. (Pl.) subspinosus. However, it cannot yet be said whether this is a positively adaptive trait brought about by developmental flexibility. Some evidence for the latter strategy is provided by the occurrence of S. (Pl.) subspinosus with other Spondylopecten species, implying that selection of micro-habitats of species-specific size and shape prevented competition for space and thus allowed coexistence. In this respect it is worth noting that of the total of only three features which aid in distinguishing Spondylopecten species, one is convexity. Since Spondylopecten usually occurs in reefs there is the possibility that the growth forms of different coral species provided the appropriate crevices, fissures etc. for each species of Spondylopecten (but see p. 96). For S. (Pl.) subspinosus it is likely that some softbodied organism played the same role during the early part of its stratigraphic range (see Section 8).

Further evidence for the vital role of convexity in the Spondylopecten mode of life is provided by the impressive array of coadaptations which high convexity has necessitated. Departure from the low convexity form of most pectinids raises the problem of interpenetrant umbones when gnomonic growth of the shell results in a logarithmic spiral of more than half a revolution (STASEK, 1963). In the apparent impossibility of interumbonal growth or lateral displacement of the umbones in the Pectinidae, the problem seems to have been solved in Spondylopecten by the development of teeth which effectively lift the hinge out of the plane of commisure and thus prevent umbonal friction (text fig. 73). This has the disadvantage of tending to split the ligament upon shell closure (text fig. 74) thus a further adaptation, downward growth of the auricles towards the opposite valve, is required to maintain contact between the valves (Pl. 3, Figs. 4, 8).

In contrast to the above interpretation, STAESCHE (1926) contended that thickness, convexity, prominent plicae and

Text fig. 73: Articulation in high convexity shelfs (schematic).

cardinal teeth were all strengthening adaptations to the turbulent environment of a reef. However, STANLEY (1970) has shown that the most exposed of modern shores are colonised by relatively thin-shelled, unornamented bivalves, thereby implying that water movements even of a violent kind are insufficient to warrant the development of a strong shell. Similarly STAESCHE's suggestion that the above features are strengthening adaptations directed against crab predation in the reefal environment can be ruled out because there is no evidence to suggest that this is any more of a problem in reefs than in level-bottom communities, where smooth, flat, thinshelled, edentulous pectinids also occur.

Text fig. 74: Schematic section of umbonal region in *Spondylopecten* with probable condition of outer ligament upon valve opening and closure.

It is unlikely that the plicae could have added any useful strength and stiffness to that provided by the thick shell and it is more probable that they served to increase purchase upon the substrate (see above).

The heavy shell, moderate to high convexity and prominent ornamentation render it unlikely that *S. (Pl.) subspinosus* could have been anything more than a very inefficient swimmer.

10. ORIGINS AND EVOLUTION

On the basis of its overall similarity, the most likely ancestor for *S. (Pl.) subspinosus* is *Pseudopecten (Ps.) veyrasensis*. The acquisition of cardinal teeth, spinose ornament and a different pattern of plical variation (10–13 cf. 12–15 plicae) by *S. (Pl.) subspinosus* cannot be attributed to heterochrony acting upon ancestral allometries so it is likely that trans-specific evolution involved a profound rearrangement of the genome. STAESCHF (1926) considered that '*Pecten' lottii* GEMMELLARO and DI BLASI (see Section 4) represented a transitional stage between *Pseudopecten* and *Spondylopecten*. However, the species is only known from one example (from an unspecified horizon in the L. Lias) thus '*P.' lottii* is more reasonably to be thought of as an extreme variant of either *S. (Pl.) subspinosus* or *Ps. (Ps.) veyrasensis* rather than an indicator of gradual evolution between the species.

There appear to be no phyletic changes within *S. (Pl.) sub*spinosus. The range of plical variation remains constant; forms with 10 and 13 plicae being known from the M. (e. g. BM 65939 and MNO 2421) and U. (e. g. MNP S3842 and MNO 3766) Jurassic. Apparent phyletic oscillations in maximum height from 23 mm (U. Bajocian) to 27 mm (U. Bathonian) to 21 mm (L. Callovian) to 27 mm (U. Oxfordian) to 19 mm (Tithonian) could well be related to the environment (see Section 8).

Subgenus SPONDYLOPECTEN s. s. (svnonym Cardinopecten Rollier 1904)

ORIGINAL DIAGNOSIS

(see p. 83 for the reason for the inclusion of this section) ,Das interessanteste an diesen Formen ist jedenfalls das Schloß, und darüber geben meine verkieselten Exemplare guten Aufschluß. Auf der rechten Klappe sieht man unter dem wenig gewölbten Wirbel eine verhältnismäßig breite Area, die durch die Bandgrube wie bei *Spondylus* gespalten ist.

Neben der Bandgrube liegen unter der Area jederseits Zähne und zwar ist der vordere bedeutend größer, vorausgesetzt, daß der hintere nicht teilweise abgebrochen ist, was bei meinen Exemplaren immerhin möglich wäre.

QUENSTEDT hebt diese Ungleichheit der Zähne jedoch auch für seinen *Pecten globosus*..., auf den ich gleich noch zu sprechen komme, hervor, deshalb scheint sie also normal zu sein. Der große Vorderzahn ist löffelförmig in die Höhe gekrümmt und zeigt auf der Area zugekehrten Seite senkrechte, parallel Streifen; der Hinterzahn ist klein und undeutlich, er erhebt sich kaum über die Area. Außerdem ist der gerade Schloßrand, vorn der Oberrand des Ohres, mit feinen senkrechten Kerben versehen. Von der linken Klappe besitze ich leider kein ganz erhaltenes Schloß; ich habe nur die senkrechten Kerben auf dem Schloßrande constatiren können.' (relevant extract from description of *Pecten (Spondylopecten)* cf. *erinaceus* BUVIGNIER; ROEDER, 1882)

AMENDED DIAGNOSIS

Spondylopecten with rounded plicae bearing 2-4 rows of spines. Jur. (Aalen. - U. Tithon.), Eu., Afr., Asia.

Text fig. 75: Spondylopecten (S.) palinurus/subpunctatus - frequency distribution for number of plicae.

DISCUSSION

In general form all members of *S. (Spondylopecten)* are very similar. It is possible therefore that the sub-groups identified below could be polymorphs of the same species. However, with the apparent impossibility of detecting polymorphism in the fossil record it seems preferable to treat them as separate species.

In measured museum specimens the range of plical variation in *S. (Spondylopecten)* is from 18–71. Within the range 18–36 plicae there is an essentially bimodal distribution grouped around modes at 21 and 30/32 plicae with an intervening trough at 26 plicae (text fig. 75). Individuals in the former group (herein referred to *S. (S.) palinurus)* also seem to differ from those in the latter (herein referred to *S. (S.) subpunctatus*) by their lower convexity (text figs. 77, 84) and in the possession of four rather than two rows of plical spines. The single known specimen with 26 plicae (MNP) is abraded but apparently originally bore four rows of spines. It is therefore considered to indicate the upper limit of plical variation in the former group.

Within the first group later populations differ in the mode and range of plical variation (text fig. 79) and in convexity (text fig. 77). While there can be little doubt of an ancestordescendant relationship some authors would consider such differences worthy of a specific separation. However, apart from the difficulties of objectively defining the species there is no evidence that separate lineages existed at any one time. In fact there is some evidence (see p. 97) that earlier and later populations were linked by gradual phyletic evolution. Thus following the rationale adopted in this work, the earlier and later populations are herein considered to belong to the same species. Similar reasoning can be applied to the group of forms referred to *S. (S.) subpunctatus* in which later samples differ in the mode and range of plical variation (text fig. 86) and in convexity (text fig. 84) but in which there is no evidence for coexisting lineages, yet a certain amount for phyletic gradualism (see p. f02).

The paucity of available museum specimens renders it difficult to make any objective division in forms with more plicae than *S. (S.) subpunctatus.* Except where indicated, museum specimens with the following plical counts are only known singly: 42, 43 (3), 44 (3), 45, 46, 48, 51, 52, 53 (2), 54, 56, 60, 63, 64, 71. However, foreign authors who have undoubtedly had access to a greater volume of material provide good evidence for a bimodal distribution in the frequency of plical counts. STAESCHE (1926) refers to specimens with about 45 plicae while YIN (1931) refers to a number of specimens with between 42 and 48 plicae, thus forms within the latter range are considered to belong to a third *S. (Spondylopecten)* species, (*S. (S.) cardinatus*). BOEHM (1883) records 55 specimens with over 60 plicae while STAFSCHE (1926) records numerous specimens with between 55 and 65 plicae, thus forms within the latter range, together with rare museum specimens with plical counts just outside this range (51, 52, 53, 54, 71) are considered to belong to a fourth *S. (Spondylopecten)* species (*S. (S.) globosus*).

Spondylopecten (Spondylopecten) palinurus (D'ORBIGNY 1850) Pl. 3, Figs. 8–14; text figs. 75 (pars), 76–81

Synonymy

- 1850 Pecten palmurus sp. nov; D'ORBIGNY, v. 1, p. 342 (BOULE, 1925, v. 14, p. 161, pl. 20, figs. 11, 12).
- v' 1850 Pecten Nireus sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 174, pl. 20, figs. 5, 6).
 - 1850 *Pecten Nicaeus* sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 174, pl. 20, figs. 7, 8).
 - 1852 Pecten erinaceus sp. nov; BUVIGNIER, p. 23, pl. 19, figs. 7–12.
- v 1857 Pecten symmetricus sp. nov; MORRIS in HULL, p. 103, pl. 1, figs. 3, 3a-c.
 - 1858 Pecten subpunctatus MUNSTER; QUENSTEDT, p. 627, pl. 77, figs. 27–29 (non MUNSTER sp.).
 - 1859 Pecten Monsbeliardensis sp. nov; CONTEJEAN, p. 316, pl. 23, figs. 16–18.
 - 1860 Pecten Nicaeus D'ORBIGNY; COQUAND, p. 79.
 - 1862 Pecten erinaceus BUVIGNIFR; THURMANN and ÉTALLON, p. 250, pl. 35, fig. 2.
 - 1862 Pecten araricus sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 251, pl. 35, fig. 3.
 - 1862 *Pecten Monsbeliardensis* CONTEJFAN; THURMANN and ÉTALLON, p. 252, pl. 35, fig. 5.
- ? 1874 Pecten catulloi sp. nov; GEMMELLARO and DI BLASI, p. 107, pl. 2, figs. 1–5.
- ? 1875 Pecten catulloi GEMMELLARO and DI BLASI; GEMMELLARO, p. 42.
- 1880 Pecten semiarticulatus sp. nov; G. MENEGHINI, p. 357, pl. 22, fig. 18.
- 1881 Pecten cartieri sp. nov; DE LORIOL, p. 88, pl. 12, figs. 8–10.
- 1881 Pecten crinaceus BUVIGNIFR; DE LORIOL, p. 92, pl. 13, figs. 1, 2.
- 1882 Pecten (Spondylopecten) cf. ermaceus BUVIGNIER; ROEDER, p. 52, pl. 2, figs. 4a–c.
- 1893 Pecten Cartieri DI-1.ORIOI ; SIEMIRADZKI, p. 119.
- 1894 Pecten erinaceus BUVIGNIER; DE LORIOL, p. 48, pl. 5, fig. 4.
- ? 1897 Pecten Soyhierensis sp. nov; DE LORIOL, p. 128, pl. 15, fig. 6.
- (?) 1899 Pecten Soybierensis de Loriol; de Loriol, p. 170.
- ? 1900 Pecten Soyhierensis DE LORIOL; DE LORIOL, p. 128.
- 1901 *Pecten (Chlamys) Roeden* sp. nov; DE LORIOL, p. 103, pl. 6, figs. 6, 7.
- ? 1903 Pecten subpunctatus MUNSTER; REMES, p. 203, pl. 19, figs. 8a-c (non MUNSTER sp.).
- (?) 1904 Pecten Soyherensis DE LORIOL; DE LORIOL, P. 217.
 1904 Pecten subpunctatus MUNSTER; DE LORIOL, p. 217, pl. 23, fig. 4 (non MUNSTER sp.).
 - 1905 Pecten sp; KRUMBECK, p. 104, pl. 14, figs. 2a-d.
- v 1905 Pecten ermaceus BUVIGNIER; PERON, p. 214, pl. 10, fig. 1.
 - 1907a *Chlamys Grossouvrei* sp. nov; COSSMANN, p. 239, pl. 8, fig. 19.

- ? 1910 Pecten subpunctatus MÜNSTER; SIMIONESCU, p. 14 (non MÜNSTER sp.).
 - 1912 Chlamys (Aequipecten) palinurus (D'ORBIGNY); Cossmann, p. 2, pl. 1, figs. 1–4.
 - 1912 Pecten semiarticulatus G. MENFGHINI; DAL PIAZ, p. 246, pl. 1, figs. 15a, 15b.
- v 1916 Aequipecten symmetricus (MORRIS); PARIS and RICHARDSON, p. 523, pl. 44, figs. 6a, 6b.
 - 1925 *Chlamys (Aequipecten) syriacus* sp. nov; Coss-MANN in DOUVILLÉ and COSSMANN, p. 325, pl. 8, figs. 7a-c.
 - 1926 Chlamys erinaceus (BUVIGNIER); ROMAN, p. 196.
- ? 1931 Pecten (Spondylopecten) erinaceus BUVIGNIER; YIN, p. 119.
- v*? 1935a *Chlamys (Aequipecten) macfadyeni sp. nov; Cox,* p. 176, pl. 23, figs. 11a, 11b.
 - 1936 Spondylopecten erinaceus (BUVIGNIER); DECHAS-EAUX, p. 67.
 - 1952 Chlamys (Spondylopecten) stoliczkai sp. nov; Cox, p. 15, pl. 3, figs. 14–20.
- v¹⁰ 1952 Chlamys (Spondylopecten?) badiensis sp. nov; Cox, p. 16, pl. 1, figs. 14a, 14b.
 - 1958 Chlanys (Aequipecten) cf. palmurus (D'ORB-IGNY); R. HUDSON, p. 419.
- (?) 1958 Chlamys (Acquipecten) syruaca COSSMANN; R. HUDSON, pp. 419, 420.
- ? 1959 Aequipecten kotsubи Кімига; Тамига, р. 58, pl. 6, figs. 33, 34.
- v 1964 Spondylopecten grossouvrei (COSSMANN); J.-C. FISCHER, p. 18, pl. 1, figs. 11, 12.
 - 1965 *Chlamys (Spondylopecten) badiensus* COX; COX, p. 58, pl. 7, figs. 3, 4.

Lectotype of *Pecten palmurus* D'ORBIGNY 1850, v. 1, p. 342 designated herein; MNO 3401; figured BOULE, 1925, pl. 20, figs. 11, 12; Callovian, Pizieux (Sarthe). Paralectotype; also MNO 3401; Callovian, Etrochey (Côte d'Or).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Espece renflée, presque ronde à 20 côtes regulières, aplaties, plus larges que les sillons, avec des indices de dents sur les côtes. France, Pizieux'.

2. AMENDED DIAGNOSIS

Distinguished from all other species of *S*. (*Spondylopecten*) by the number of plicae (26 or less).

3. AMENDED DESCRIPTION

Disc sub-orbicular at all sizes (text fig. 76), maximum height 62 mm (DF LORIOL, 1894). Umbonal angle very variable (text fig. 78) but increasing (at a decreasing rate) during ontogeny to produce concave dorsal margins. Disc flanks moderately high.

Equilateral; equivalve, convexity variable, moderate to high, apparently increasing allometrically at a faster rate in earlier representatives (text fig. 77).

Intersinal distance greater in left valve than right; moderately large juvenile byssal notch becoming relatively smaller during ontogeny.

Text fig. 76: Spondylopecten (S.) palinurus - height/length.

Auricles well demarcated from disc, moderate in size, anterior larger than posterior. Anterior auricles meeting hinge line at about 90°, posterior auricles meeting hinge line at an obtuse angle. Right anterior auricle meeting disc at an obtuse angle; remaining auricles meeting disc at an acute angle. Right anterior auricle bearing between 5 and 8 radial costae. All auricles sloping downwards from umbo towards opposite valve (Pl. 3, Fig. 8).

Text fig. 77: Spondylopecten (S.) palinurus - convexity/length.

Both valves bearing between 18 (? 16, see Section 4) and 26 rounded radial plicae; modal number apparently increasing phyletically (text fig. 79); plicae slightly wider than sulci in right valve, converse in left valve. Plicae bearing 4 rows of short, closely spaced spines, directed ventrally (Pl. 3, Fig. 14).

Cardinal area of right valve bearing 2 peg-shaped crura, anterior larger than posterior (ROEDER, 1882, pl. 2, fig. 4). Shell thickness moderate to high; plical amplitude reduced on shell interior.

Text fig. 78: Spondylopecten (S.) palinurus – length/umbonal angle.

Text fig. 79: Spondylopecten (S.) palinurus – frequency distributions for number of plicae in Bajocian, Oxfordian and Kimmeridgian specimens.

4. DISCUSSION

D'ORBIGNY'S (1850) diagnosis for 'Pecten' palinurus (see Section 1) leaves no possibility of confusion for another Jurassic pectinid. Therefore, following Opinion 126 of the ICZN the name may be adopted for the species under discussion. BOULE (1925) has figured one of the syntypes (MNO 3401) and this specimen is herein designated as lectotype. The other (also MNO 3401) becomes ipso facto the paralectotype. 'P.' Nireus D'ORBIGNY was separated from 'P.' palinurus on the basis of 'côtes plus simples', presumably implying a lack of spinose ornament. One of the syntypes (MNO 4294) possesses only two rows of spines per plica but this is clearly the result of abrasion (as appears to be the case in all the following instances where a reduced number of spine rows is cited) and H/L (1) and the number of plicae (23) are within the range of *S*. (*S*.) *palinurus* from the same stage (Oxfordian). '*P*.' *Nicaeus* D'ORBIGNY was separated on the basis of abnormally wide sulci. However, this feature is merely the result of preservation of the 6 syntypes (MNO 4295) as internal moulds (BOULF, 1929) which has led to a reduction in plical amplitude and an apparent increase in plical wavelength.

The single known type of 'P.' symmetricus MORRIS (IGS 8853; Pl. 3, Fig. 9) from the Bajocian has 20 plicae (2 spine rows) and is a typical example of *S. (S.) palinurus* from the stage.

"P." erinaceus Buvignier (3 spine rows, 22–24 plicae) and "P." ("Chlamys") Roederi Di LORIOI (24 plicae), both described from the Oxfordian, have plical counts and metric proportions of their respective figures (2, 3) which are inseparable from those of S. (S.) palinurus from the same stage. "P." araricus ÉTALLON was said to lack the spinose ornament of "P." erinaceus but the figured specimen has clearly been subject to abrasion.

The holotypes (OD) of 'Ch.' ('Aequipecten') macfadyeni Cox (BM L6+138; Pl. 3, Fig. 11) from the Oxfordian/Kimmeridgian of E. Africa and 'Ch.' (S.) stoliczkai Cox (IGS 17281) and 'Ch.' (S?) badiensis Cox (BM L75245; Pl. 3, Fig. 12) from the Callovian of Cutch, all have their respective numbers of plicae (19, 20/21, 21/22) and metric proportions (4, 5, 6) within the total (stratigraphically undifferentiated) range of S. (S.) palinurus. The first and last appear to lack spines but may be abraded. Specimens from the Callovian of E. Africa referred to 'Ch.' (S.) badiensis by Cox (1965) exhibit the characteristic spines. The holotype of 'Ch.' ('Ae.') macfadyeni also has an abnormally small number of plicae for its particular stratigraphic horizon but this might well be an artefact of the relatively limited number of specimens for comparison, as is almost certainly the case for 'P.' sp. KRUM-BECK, 'P.' Cartieri DE LORIOI and 'P.' Monsbeliardensis CONTEJEAN, all of which are from the Kimmeridgian and refer to specimens with respectively 22, and as many as 25 and 26 plicae. KRUMBECK's specimens were compared with 'P.' erinaceus Buvignier, a synonym of S. (S.) palinurus (see above), while metric proportions of the figures of DF LORIOL'S (7) and CONTJEAN'S (8) specimens are indistinguishable from S. (S.) palinurus. The inclusion of 'P.' Soyhierensis DE LORIOL (Oxfordian) within S. (S.) palinurus is more problematical since forms with as few as 16 plicae are cited and L/UA (9) of the original figure is somewhat low. However, 'P.' semiarticulatus MENEGHINI (Bathonian), a species with 17 plicae and high L/UA (10), has the plical spine rows (albeit only 2 - seeabove) diagnostic of S. (Spondylopecten) and DAL PIAZ (1912) has collected a topotype specimen, the figure of which has metric proportions (11) which are indistinguishable from S. (S.) palinurus. It therefore seems likely that the range of variation in the latter species extends considerably further than that indicated by museum specimens alone. 'P.' catulloi GEMMEL-LARO and DI BLASI (Tithonian), a species with 22 plicae known from only 4 specimens, may therefore by synonymous with S. (S.) palinurus in spite of the considerably atypical H/L, L/C and L/UA (12) of its original figure.

'Ch.' ('Ae.') syriacus Cossmann was said to have 30 plicae but the figures of the holotype (OD) reveal a maximum of

only 21 and metric proportions (13) are within the total range of *S.* (*S.*) *palinurus*. With the possibility of misapplication of CossMANN's specific name to forms which are referable to *S*. (*S.*) *subpunctatus*, unfigured records of his species in R. HUD-SON (1958) must be treated with some caution.

The figures of 'P.' subpunctatus MUNSTER in QUENSTEDT (1858) and REMES (1903) and the descriptions in DE LORIOL (1904) and SIMIONESCU (1910) are of specimens with respectively 25, 18–19, 24 and 22–26 plicae. All are thus outside the range of variation accredited to MUNSTER's species (see p. 98) and fall within the total range of S. (S.) palmurus. The specimens referred to in QUENSTEDT and DE LORIOL are also within the range of variation in museum specimens of S. (S.) palmurus from the same stage (Oxfordian). There are insufficient museum specimens of comparable age (U. Tithonian) to allow an assessment of whether the same could be said of REMES' specimens. Those referred to in SIMIONESCU are of indeterminate age.

'P.' (S.) erinaceus BUVIGNIER; YIN (Tithonian) was not figured and was only distinguished from 'P.' (S.) globosus QUENSTEDT; YIN (= S. (S.) subpunctatus) by its possession of less than 30 plicae. Since this does not exclude all variants of S. (S.) subpunctatus YIN's record is of uncertain status.

Although the exact dimensions of 'Cb.' Grossouvrei COSSMANN (Callovian) are not available the strongly convex form with 25 plicae is unlike that of any known Jurassic pectinid other than S. (S.) palinurus. For this reason 'Ae.' kotsubu KIMURA; TAMURA, an inflated form with 22 plicae from the U. Jurassic of Japan may also be synonymous with S. (S.) palinurus. It has not been possible to trace KIMURA's original description.

5. STRATIGRAPHIC RANGE

A poorly preserved specimen with 23 plicae (BM 30496) from the Spinatum zone (U. Pliensbachian) of Northants. might be an early representative of S. (S.) palinurus. However, apart from this there are no records of the species until the Garantiana and Parkinsoni zones (U. Bajocian) when, in the Cotswolds, the species is fairly common. Elsewhere S. (S.) palmurus is extremely rare in the U. Bajocian. Bathonian records are limited to N. Italy (G. MENEGHINI, 1880; DAL PIAZ, 1912), and Indre (COSSMANN, 1907a; J.-C. FISCHER, 1964) and Var (BM L10289) in France although numerous specimens are recorded in all but the last area. In the Callovian the species is only known from occasional specimens from the Côte d'Or and Sarthe in France (D'ORBIGNY, 1850; COSSMANN, 1912) and Cutch in India (Cox, 1952), and from E. Africa (Cox, 1965), Sinai (DOUVILLE and COSSMANN, 1925), S. Israel (R. HUDSON, 1958) and Arabia (BM L61511). In Europe S. (S.) palinurus reaches its acme in the Oxfordian and Kimmeridgian when it is locally abundant. Certain records from the Tithonian are restricted to one specimen from the lower substage at Nattheim (BM 63059). However, specimens described from the L. Tithonian of Sicily (GEMMELLARO and DI BLASI, 1874; GEMMFLEARO, 1875) and the U. Tithonian of S. France (YIN, 1931) and Czechoslovakia (REMES, 1903) may well constitute further records of S. (S.) palinurus (see Section 4).

Text fig. 80: Spondylopecten (S.) palinurus – European distribution.

6. GEOGRAPHIC RANGE

In Europe (text fig. 80) the distribution of *S. (S.) palinurus* is intimately linked with that of coralliferous deposits (see Section 7). Thus the species occurs most commonly in the Oxfordian and Kimmeridgian of central W. Europe where this facies is particularly well developed. The lack of *S. (S.) palinurus* from coralliferous deposits in the Bathonian and Oxfordian of England and the Bathonian of Normandy sug-

gests that the northward range of the species was restricted by temperature (however, see Section 8).

In the Callovian the range of *S*. (*S*.) palinurus underwent an expansion along the southern shores of Tethys, resulting in a palaeolatitudinal spread of some 50° (text fig. 81). A similar expansion along the northern shores is evidenced only by one dubious specimen from the U. Jurassic of Japan (see Section 4).

Text fig. 81: Spondylopecten (S.) palinurus - World distribution (Callovian reconstruction).

7. DESCRIPTION OF ECOLOGY

Bivalved specimens of *S*. (*S*.) palinurus are quite common in the Upper Coral Bed and its lateral equivalents in the Parkinsoni zone (U. Bajocian) of the southern Cotswolds. The maximum height attained is 26.5 mm (BM L84516). The associated fauna is dominated by the 'coarse' phenotype of *Ch*. (*Ch.*) textoria, Limatula, Plagiostoma, Ctenostreon and Trigonia together with the brachiopods Rhynchonella, *Terebratula* and *Zeilleria*, and the coral *Isastrea* (RICHARD-SON, 1907, 1910). *S.* (*S.*) *palinurus* also occurs in apparently non-coralliferous deposits of the Garantiana zone in the same area. However, the number of examples is small and only one specimen is known from non-coralliferous U. Bajocian deposits elsewhere in England. The modal number of plicae in specimens from the substage is 20, with a range from 18–21 (text fig. 79). In the Bathonian *S.* (*S.*) *palmurus* occurs fairly commonly in N. Italy, where it reaches a maximum height of 25 mm (G. MENEGHINI, 1880; DAI PIAZ, 1912) and in a coral bed in Indre (France) where it is associated with the 'coarse' phenotype of *Cb.* (*Cb.*) *textoria* (COSMANN, 1907a; J.-C. FISCHER, 1964). The range of plical variation in Bathonian *S.* (*S.*) *palimurus* is from 17 (G. MENEGHINI, 1880) to 25 (COSMANN, 1907a).

Although widespread in the Callovian (see Sections 5, 6) *S. .S.) palinurus* is not known to be common anywhere. The range of plical variation in specimens from the stage is from 20 (e. g. Cossmann, 1912) to 23 (Cox, 1965) and the maximum height is 37 mm (MNS).

In the Oxfordian S. (S.) *palinurus* is very common in the coral/*Diceras* reefs of the Yonne, Meuse and Swiss and French Jura. In the last area it reaches a maximum height of 62 mm (DF LORIOT, 1894). The typical associated fauna is described on p. 88. The range of plical variation undoubtedly extends from 20–26 (mode 22) and may include forms with as few as 16 plicae (text-fig. 79; b) LORIOT, 1900).

In coral/Diceras facies in the Kimmeridgian of the Jura S. (S.) palinurus is common and appears to reach a maximum height of 35 mm (CONTELLAN, 1859). There is an abundant associated molluscan fauna of in- and epifaunal gastropods and bivalves (including the byssate genera Camptonectes, Oxytoma, Pinna, Arca and 'Mytilus') together with rhynchonellid brachiopods. Only one specimen (GPIG) is known from contemporaneous coral patch reef facies at La Rochelle and none are recorded from similar facies at Kelheim (S. Germany). The range of plical variation in Kimmeridgian S. (S.) palinurus is from 22–26 (text fig. 79; CONTEJEAN, 1859; KRUMBECK, 1905) with a mode of 24.

The single undoubted Tithonian example of *S*. (*S*.) *palmurus* together with other putative records from the stage (see Section 5) are all from coral reef facies (fauna p. 88).

There are no records of *S*. (*S*.) *palinurus* from the deep water pelagic limestones of the peri-Mediterranean region and the species is very rare in siliciclastic deposits anywhere in Europe.

8. INTERPRETATION OF ECOLOGY

The data presented in Section 7 suggest very strongly that the occurrence of S. (S.) palmurus is dependent on the presence of corals. Reefs appear to have constituted the most favourable habitat but the fact that the species occurs in coral accumulations of less than reefal dimensions (Parkinsoni zone, S. Cotswolds; Bathonian, Indre) suggests that the particular abundance in reets is merely a reflection of the concentration of corals rather than a consequence of a preference for upstanding structures (cf. HERTLIN, 1969; HMLAM, 1976; see pp. 83, 88). The correspondence between the areal distribution of coralliterous deposits and that of common S. (S.) palinurus in the Parkinsoni zone of N. Somerset and Gloucestershire is striking enough to be an incentive for a facies analysis of the underlying Garantiana zone deposits in order to test the possibility that the examples of S. (S.) palinurus contained therein might be derived from laterally equivalent but unexposed coralliferous deposits. Similarly the fact that the only occurrence in the Bathonian and Callovian where facies are known (Bathonian, Indre) is from a coral bed containing the reef-dwelling 'coarse' phenotype of *Ch. (Ch.) textoria* should be an impetus for analyses of the sediments and fauna of the other horizons containing *S. (S.) palinurus* in these stages.

In spite of the apparent dependence on corals by no means all coralliferous horizons within the stratigraphic range of S. (S.) palmurus were colonised abundantly. The fact that during the Kimmeridgian coral patch reefs at the southerly latitudes of La Rochelle and Kelheim were only colonised very rarely or not at all, while during the Bajocian coralliferous deposits in England were occupied in numbers, suggests that the complete absence of S. (S.) palmurus from Bathonian coral patch reefs in Normandy and England and similar facies in the Oxfordian of England cannot be the result of a simple temperature dependence (see p. 95) or even of a more general intolerance of relatively unstable environments (see p. 89). In certain of the above cases the lack of S. (S.) palmurus could be a consequence of the particular coral fauna of the reels and their resultant dense structure, an explanation advanced for the absence or rarity of S. (Pl.) subspinosus (see p. 88). However, the Oxfordian reefs of England do not seem to have had an especially dense structure (see p. 89). Evidence from the L. Tithonian reef at Nattheim, where S. (S.) palmurus is extremely rare but S Pl.) subspinosus is abundant, suggests a more specific control on distribution. For an alternative explanation one might invoke the possibility (see p. 89) of a commensal relationship between particular coral species and cach of S. (Pl.) subspinosus and S. (S.) palinurus, and infer the absence of the relevant corals from the reefs lacking these Spondylopecten species. However, such an explanation suffers generally from the lack of any direct evidence for commensalism and specifically, in the case of S. (S.) palinurus, from the fact that in the Nattheim reef the latter species is very rare although coral diversity is high, 64 species being cited by GLYER (1954). It must therefore be admitted that no unified theory can yet be proposed to account for the inconsistent distribution of S. (Pl.) subspinosus and S. (S.) palinurus in coralliferous facies (see p. 101).

The overall rarity of *S*. (*S*.) palinurus in the M. Jurassic of Europe as a whole can be viewed as a consequence of the localised development of coralliferous deposits. The very widespread development of argillaceous facies in the Callovian, producing unfavourable conditions for coral growth, may well have prompted the migration of *S*. (*S*.) palmurus outside Europe along the southern shores of Tethys (see Section 6).

The usual occurrence of *S*. (*S*.) palinurus in moderate numbers with a high diversity fauna indicates that it was an equilibrium species (LEVINTON, 1970). Presumably stenotopy was developed to a high enough degree to prevent competition with the other species of *Spondylopecten* with which it frequently occurs.

9. FUNCTIONAL MORPHOLOGY

In the absence of more precise ecological data for *S. (S.) palmurus* little can be added to the general interpretation of functional morphology in *Spondylopecten* presented for the essentially similar species *S. (Pl.) subspinosus* (see p. 89). A 'wedged' mode of life is further evidenced by the great variation in convexity in *S. (S.) palinurus.* However, as for *S. (Pl.) subspinosus* it cannot yet be said definitely that this is a positively adaptive feature brought about by developmental flexibility (however, see below).

The moderately large maximum height of *S*. (*S*.) palinurus (H: 62) is near the upper limit for byssally attached Recent pectinids. The largest byssate but otherwise unsupported species from the coral reef fauna of Eniwetok Atoll (*Gloripallium pallium*) reaches a maximum height of 85 mm. However, this and other pendent or tightly byssate species rarely exceed a height of 75 mm (WALLER, 1972b). It therefore seems likely that large specimens of *S*. (*S*.) palmurus gained support, additional to that provided by the byssus, through contact with the substrate, as inferred independently above.

The moderate to high convexity and shell thickness in *S*. (*S*.) *palinurus* suggest that at best it could only have been a very inefficient swimmer.

The apparent phyletic increase in the number of plicae may be interpreted mechanically when considered in conjunction with phyletic decrease in convexity and increase in height (see Section 10). The latter requires relatively large amounts of CaCO₃ to be secreted when growth is based on a tight logarithmic spiral as in S. (S.) palinurus. A decrease in the spiral angle and hence in convexity thus represents a more bioeconomical basis for height increase. However, it must also entail a weakening of the shell so an increase in the number of plicae can be viewed as an attempt to strengthen and stiffen the shell by effectively shortening the wavelength of the corrugations. Such an interpretation requires however that the increased strength and stiffness contribute significantly to the fitness of the animal as a whole. This must be considered doubtful in S. (S.) palinurus since the thickness of the shell would appear to provide adequate protection against all but the most extreme stresses. Nevertheless, the impression gained by the author that the variation in convexity and number of plicae is positively correlated at any one horizon indicates that there is at least some functional interdependence and suggests moreover that S. (S.) palmurus is developmentally flexible (see above).

10. ORIGINS AND EVOLUTION

If the very doubtful record of *S*. (*S*.) palinurus in the U. Pliensbachian is discounted, *S*. (*S*.) subpunctatus becomes the most likely ancestor for the species (although see p. 101). There is no evidence to suggest that the evolution of a separate pattern of plical variation occurred gradually.

There appear to be several phyletic trends within *S*. (*S*.) palinurus. Maximum height increases, presumably gradually, from 26.5 mm (U. Bajocian) to 37 mm (Callovian) to 62 mm (Oxfordian). The reversal of this trend in the Kimmeridgian (H_{max} : 35) could well be an artefact of the relatively limited number of specimens from the stage measured by the author. The pronounced phyletic increase in the mean number of plicae indicated by text fig. 79 might also be an artefact of the more general paucity of measured museum specimens since bibliographic sources (see Section 4) suggest a far less consistent trend. Nevertheless, specimens mentioned in the literature do not refute the gradual unidirectional trend in the modal number of plicae indicated by text fig. 79. Indeed the

97

15 or so specimens collected by Cox (1952) from the Callovian of Cutch which were said to have a range of between 20 and 22 plicae (exactly between the Bajocian and Oxfordian modes) provide positive evidence for such a trend. Only one of the other Callovian records (Cox, 1965 for two specimens with 23 plicae) refers to specimens with plical counts outside the latter range.

A further phyletic trend is towards decreased convexity. However, unlike the above cases there is little reason to think that evolution occurred gradually. Most Callovian, Oxfordian and Kimmeridgian specimens have lower C/L ratios than their Bajocian ancestors (text lig. 77). Since relative convexity appears to increase during the ontogeny of the latter there is the possibility that descendant forms could have arisen by neoteny. However, heterochrony cannot account for the periodic phyletic increases in the ranges of plical variation constituted by specimens mentioned in the literature together with those in museums (Bajocian, 18–21; Bathonian, 17–25; Callovian, 20–23; Oxfordian, 20–26; Kimmeridgian, 22–26) thus phyletic evolution in *S. (S.) palmurus* may generally have been a product of change in the structural rather than the regulatory genome.

Phyletic increase in maximum height combined with stenotopy and a possibility of neoteny suggests the prevalence of 'K' selection for increased trophic efficiency (GOUED, 1977).

Spondylopecten (Spondylopecten) subpunctatus (MUNSTER 1833)

Pl. 3, Figs. 15-19; text figs. 75 (pars), 82-86

Synonymy

\mathbf{V}^{25}	1833	Pecten subpunctatus sp. nov; MUNSTER in GOLD-
		FUSS, p. 48, pl. 90, figs. 13a, 13b.

- 1843 Pecten subpunctatus MONSTER; QUENSTEDT, p. 433.
- p 1843 Pecten globosus sp. nov; QUENSTEDT, p. 476.
- 1850 Pecten subpunctatus MÜNSTFR;D'ORBIGNY, v. 1, p.374.
- 1852 Pecten Moreanus sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 18–20.
- 1852 Pecten globosus QUENSTEDT; QUENSTEDT, p. 507, pl. 40, fig. 45, (non fig. 46; non QUENSTEDT sp.).
- non 1858 Pecten subpunctatus MONSTER; QUENSTEDT, p. 627, pl. 77, figs. 27–29.
- v* 1858 Pecten aequatus sp. nov; QUENSTEDT, p. 755, pl. 92, fig. 12.
 - 1858 *Pecten globosus* QUENSTEDT; QUENSTEDT, pl. 78, fig. 2 (non pl. 92, fig. 20; non QUENSTEDT sp.).
 - 1862 *Pecten Globosus* QUENSTEDT; THURMANN and ÉTALLON, p. 250.
 - 1866 Pecten subpunctatus MUNSTER; OPPEL, p. 289.
 - 1867 Pecten globosus QUENSTEDT; DE LORIOL, p. 335, pl. 13, fig. 3 (non QUENSTEDT sp.).
 - 1867 *Pecten Rochati* sp. nov; DE LORIOL, p. 336, pl. 13, figs. 1, 2.
 - 1874 *Pecten arotoplicus* sp. nov; GEMMELLARO and DI BI ASI, p. 104, pl. 2, figs. 6–10.
 - 1875 Pecten arotoplicus GEMMELLARO and DI BLASI; GEMMELLARO, p. 41.
 - 1881a Pecten aequatus QUENSTEDT; BOEHM, p. 183.
- 1881b Pecten aequatus QUENSTEDT; BOEHM, p. 72.
- v 1883 Pecten arotoplicus GEMMELLARO and DI BEASI; BOEHM, p. 609, pl. 67, figs. 34, 35.

- ? 1886a Pecten erpus sp. nov; DE GREGORIO, p. 670, pl. 1, fig. 8.
 ? 1893 Pecten globosa QUENSTEDT; SIEMIRADZKI, p. 119.
 - 1894 Pecten Moreanus BUVIGNIER; DE LORIOL, p. 40, pl. 4, fig. 12.
 - 1898 Pecten globosus QUENSTEDT; E. PHILIPPI, p. 620, text figs. 6, 7 (non QUENSTEDT sp.).
 - ? 1898 *Pecten (Chlamys) erpus* DE GREGORIO; GRECO, p. 110, pl. 8, figs. 32, 33.
 - 1903 *Pecten arotoplicatus* GEMMELLARO and DI BLASI; REMES, p. 202.
 - 1903 Pecten Rochati DE LORIOL; REMES, p. 202, pl. 19, figs. 5a-c.
 - 1903 Pecten Gemmellaroi sp. nov; REMES, p. 202, pl. 19, figs. 7a-c.
- non 1903 Pecten subpunctatus MUNSTER; REMES, p. 203, pl. 19, figs. 8a-c.
 - 1903 Pecten (Spondylopecten) globosus QUENSTEDT; REMES, p. 205 (non QUENSTEDT sp.).
- non 1904 Pecten subpunctatus MUNSTER; DE LORIOL, p. 217, pl. 23, fig. 4.
 - v 1905 Pecten moreanus BUVIGNIER; PERON, p. 213.
 - 1905 *Pecten palmyrensis* sp. nov; KRUMBECK, p. 102, pl. 3, figs. 8a, 8b.
 - ? 1905 Pecten (Chlamys) globosus QUENSTEDT; KILIAN and GUÉBHARD, p. 817.
- non 1910 Pecten subpunctatus MUNSTER; SIMIONESCU, p. 14.
 - 1910 Pecten moreanus BUVIGNIER: SIMIONESCU, p. 14, pl. 2, fig. 6.
 - 1913 Pecten globosus QUENSTEDT; JOUKOWSKY and FAVRE, p. 400, pl. 17, figs. 3–6 (non QUENSTEDT sp.).
 - 1920 Pecten aratoplicus GEMMELLARO and DI BLASI; FAURE-MARGUERIT, p. 58.
 - 1920 Pecten (Spondylopecten) globosus QUENSTEDT; FAURE-MARGUERIT, p. 60, (non QUENSTEDT sp.).
 - v 1926 Spondylopecten subpunctatus (MUNSTER); STAESCHE, p. 109, pl. 4, fig. 10.
 - 1926 Spondylopecten aequatus (QUENSTEDT); STAESCHE, p. 112.
 - 1931 Pecten (Spondylopecten) globosиs QUENSTEDT; YIN, p. 118, pl. 12, figs. 3–6 (non QUENSTEDT sp.).
 - ? 1931 Pecten (Spondylopecten) erinaceus BUVIGNIER; YIN, p. 119 (non BUVIGNIER sp.).

- ? 1931 Pecten aff. subpunctatus MUNSTER; YIN, p. 122.
 1936 Spondylopecten moreanus (BUVIGNIER); DECHAS-EAUX, p. 67.
- ? 1959 Spondylopecten globosus (QUENSTEDT); HOLDER and ZIEGLER, p. 165.
 - 1966 Spondylopecten aequatus (QUENSTEDT); KARVE-CORVINUS, p. 115.
- (?) 1971 Chlamys cf. erpus (DE GREGORIO); WENDT, p. 156.
- v 1975 Spondylopecten aequatus (QUENSTEDT); YAMANI, p. 64, pl. 3, fig. 10.
- v* 1975 Spondylopecten proumbonatus sp. nov; YAMANI, p. 64, pl. 3, figs. 11, 12.

Lectotype of *Pecten subpunctatus* MUNSTER in GOLDFUSS 1833, p. 48, pl. 90, fig. 13 designated herein; BSPHG AS VII 627; Pl. 3, Fig. 15 herein; Weisser Jura β (Oxfordian), Streitberg (Franconia). Paralectotypes; the 9 other syntypes (BSPHG); also Weisser Jura β, Streitberg.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

^oPecten testa suborbiculari fornicata, costis crebris convexis marginalibus muricatus, sulcis angusti, oribus in fundo plano profunde transversim striatis, auriculis aequalibus.

E montibus Baruthinis M. M.

Dieser kleine Pectinit findet sich bei Streitberg. Er ist hoch gewölbt, gleichklappig, fast kreisrund, und hat zahlreiche, convexe, gleichförmige Rippen, auf deren Rücken man bei der Vergrößerung stachelförmige Lamellen bemerkt. Die Zwischenfurchen sind concentrisch liniert, so daß sie ein punktiertes Ansehen haben, und die Ohren klein und gleichförmig.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of *S. (Spondylopecten)* by the number of plicae (27–36 or 37, see Section 4).

Text fig. 82: Spondylopecten (S.) subpunctatus - European distribution.

3. AMENDED DESCRIPTION

Essentially similar to *S.* (*S.*) palinurus. Differing by the diagnostic larger number of plicae (see Section 2) whose range and mode apparently oscillates phyletically (text fig. 86), by the evident possession of only 2 plical spine rows, and by the higher relative convexity (text fig. 84) of contemporaneous Oxfordian specimens and the lower relative convexity of Tithonian forms of *S.* (*S.*) subpunctatus in comparison with examples of *S.* (*S.*) palinurus from any horizon. Unlike *S.* (*S.*) palinurus, *S.* (*S.*) subpunctatus also exhibits phyletic reduction in L/UA (text fig. 85) although this could be more apparent than real (see Section 9).

H/L is plotted in text fig. 83. The maximum height is 58 mm (GEMMELLARO and DI BLASI, 1874).

Text fig. 83: Spondylopecten (S.) subpunctatus - height/length.

Text fig. 84: Spondylopecten (S.) subpunctatus - convexity/tength.

4. DISCUSSION

The syntype series of '*P.' subpunctatus* MUNSTER (BSPHG) consists of a number of specimens from sponge-limestone facies, all less than 10 mm in height and with approximately 30 plicae. STAESCHE (1926) considered such specimens to be

specifically separable from juveniles of a similarly plicate form, Spondylopecten aequatus (QUENSTEDT), from coral reef facies, on the basis of the flat tops to the plicae. However, this feature together with a relatively large umbonal angle (1) can be plausibly interpreted as an aspect of ecophenotypic variation (see Section 8) and is therefore no basis for a specific distinction. Thus, on grounds of historical precedence MUNSTER's specific name is applied to the species described in Section 3 and a lectotype (BSPHG AS VII 627; Pl. 3, Fig. 15) is herein designated. Those specimens incorrectly referred to MUNSTER's species in QUENSTEDT (1858), REMES (1903), DE LORIOL (1904) and SIMIONESCU (1910) are discussed on p. 94. The two specimens said by YIN (1931) to have affinities with MUNSTER's species are of uncertain status since they were not illustrated and were described only as having numerous ribs. Specimens referred by YIN to 'P.' (Spondylopecten) erinaceus BUVIGNIER were described with similar imprecision and may be referable to either S. (S.) subpunctatus or S. (S.) palinurus (q. v.).

QUENSTEDT'S specific name 'P.' globosus has been variously employed in the literature (discussion p. 104) on account of the vagueness of the original description (1843) and the fact that the name was subsequently applied by QUENSTEDT (1852, 1858) to illustrations of both a specimen with about 60 plicae and a specimen with about 30 plicae. The latter is indistinguishable from S. (S.) subpunctatus, as are specimens from the Oxfordian with 32 plicae referred to QUENSTEDT's species by THURMANN and ÉTALLON (1862) and specimens from the Tithonian with 32, 30, 30, 32, 30-35 and 34 plicae referred to QUENSTEDT'S species by, respectively, DF LORIOL (1867), PHILIPPI (1898), REMES (1903), JOUKOWSKY and FAVRE (1913), FAURE-MARGUERIT (1920) and YIN (1931). Specimens referred to QUENSTEDT'S species by SIEMIRADZKI (1893), KILIAN and GUEBHARD (1905) and Hölder and Ziegler (1959) are of uncertain status because the number of plicae was not stated.

The sole observed type (GPtT 4-92-12; Pl. 3, Fig. 17) of 'P.' aequatus QUENSTEDT (Kimmeridgian) and the holotype

Text fig. 85: Spondylopecten (S.) subpunctatus – length/umbonal angle.

(OD; BSPHG 1957 II 329; Pl. 3, Fig. 18) of *S. pro-umbonatus* YAMANI (Tithonian) have respective numbers of plicae (28, 31) and metric proportions (2, 3) that are indistinguishable from those of *S. (S.) subpunctatus* from comparable horizons. Similarly the plical counts and metric proportions (32–34; 4) supplied by BUVIGNIER (1852) for 'P.' Moreanus (Oxfordian) and derived from the figures of 'P.' Gemmellaroi REMES (Tithonian; 35; 5) and 'P.' Palmyrensis KRUMBECK (Kimmeridgian; 28; 6) are inseparable from those of *S. (S.) subpunctatus* from the appropriate horizon.

'P.' arotoplicus GEMMELLARO and DI BLASI (Tithonian) has a plical count (32) within the range of S. (S.) subpunctatus from the same stage and the large umbonal angle (95°) cited by the authors appears to be nothing more than a consequence of large size since L/UA (7) is within the range of projected Tithonian ontogenies. 'P.' Rochati DE LORIOL, also from the Tithonian, has metric proportions (8) of the single known specimen which are indistinguishable from those of S. (S.) subpunctatus from the same stage. It therefore seems extremely likely that the abnormally large number of plicae (37) represents extreme variation within S. (S.) subpunctatus.

'P.' erpus DE GREGORIO was erected for a specimen from the Aalenian of Sicily whose number of plicae (28) and high convexity suggest strongly that it is conspecific with S. (S.) subpunctatus. GRECO (1898) has figured a further specimen with 32 plicae from the Aalenian of Calabria under the same specific name.

5. STRATIGRAPHIC RANGE

Assuming that 'P.' erpus is synonymous with S. (S.) subpunctatus (see Section 4) the earliest records of the latter

Text fig. 86: Spondylopecten (S.) subpunctatus – frequency distributions for number of plicae in Oxfordian, Kimmeridgian and Tithonian specimens.

species are from the Opalinum zone of Calabria (GRECO, 1898) and the Murchisonae zone of Sicily (DF GREGORIO, 1886a). WENDT (1971) considers that DE GREGORIO'S species ranges into the U. Bajocian in the latter area. Otherwise S. (S.) subpunctatus is unknown before the Oxfordian, when it is locally abundant. It is found thus until the U. Tithonian (BOEHM, 1883; REMES, 1903; FAURE-MARGUERIT, 1920; YIN, 1931). The lack of Bathonian and Callovian records and the consequent doubt that this attaches to the systematic position of 'P.' erpus could well be due to the rarity of the favoured reefal facies in Europe (see Sections 7, 8).

6. GEOGRAPHIC RANGE

The distribution of *S. (S.) subpunctatus* within Europe (text fig. 82) is intimately linked with that of reefal deposits (see Sections 7, 8). Thus during its acme in the U. Jurassic the species occurs most abundantly in S. Europe where this facies is particularly well developed. The only record outside Europe is from Kimmeridgian coral-bearing limestones in the Lebanon (KRUMBECK, 1905).

The absence of *S*. (*S*.) *subpunctatus* from reefal deposits in the Oxfordian of England may indicate that latitudinal temperature changes played some part in controlling the distribution of the species (however, see Section 8).

The absence of *S*. (*S*.) subpunctatus from L. Bajocian coral reefs in E. France need not affect the taxonomic status of roughly contemporaneous specimens referred to '*P*.' erpus from S. Italy and Sicily (see Sections 4, 5). The latter areas probably lay near the south side of Tethys thus it could be that *S*. (*S*.) subpunctatus arose in that region and had insufficient time to spread to more northerly latitudes before the L. Bajocian. In any case there are some grounds for thinking (see p. 89) that reefs with a structure such as that of the L. Bajocian reefs in E. France may have constituted an unfavourable environment for Spondylopecten.

7. DESCRIPTION OF ECOLOGY

The putative early records of *S. (S.) subpunctatus* from the Aalenian and Bajocian of Sicily (see Section 5) are from condensed deposits probably formed on a guyot within the Tethyan ocean. Occasional intercalations of coral debris suggest that reefs were periodically developed nearby (WENDT, 1963, 1971).

The species occurs abundantly in the Oxfordian coral reefs of the Yonne (PERON, 1905) and Swiss Jura (DE LORIOT, 1894) in association with the fauna described on p. 88. The maximum height of Oxfordian *S. (S.) subpunctatus* is 32 mm (MNS) and the range of plical variation (text fig. 86) is from 29–35 (mode: 32).

Sponge 'reef' facies in the Oxfordian and Kimmeridgian of S. Germany contain numerous S. (S.) subpunctatus but the adult height is rarely more than 5–7 mm (STAESCHE, 1926). The plicae are also flat-topped and the L/UA ratio (1) is typically low compared to specimens from coral reefs. Examples from the latter facies in the Kimmeridgian at Kelheim (S. Germany) reach a maximum height of 35 mm (GPfT) and are associated with a rich bivalve fauna (BOEHM, 1881a, b) while those from sponge 'reef' facies are typically associated with a low diversity/density bivalve fauna in which *Isoarca* is the only form to occur in numbers (NITZOPOULOS, 1974). *S.* (*S.*) palinurus seems to be absent from the Kelheim reef but it is common in coral/*Diceras* facies in the Kimmeridgian of the Jura where *S.* (*S.*) subpunctatus is unknown. The latter is also absent from contemporaneous coral reefs at La Rochelle but *S.* (*S.*) palinurus is in addition extremely rare.

The range of plical variation in Kimmeridgian *S. (S.) subpunctatus* is from 27–31 (text fig. 86) and forms from reefal facies seem to have a relatively high L/UA (text fig. 85) and C/L (text fig. 84) compared to their Oxfordian counterparts.

In the Tithonian S. (S.) subpunctatus occurs, often in abundance, in the coral reefs of Languedoc (YIN, 1931) and Isère (Faure-Marguerit, 1920) in S. France, Geneva in Switzerland (DE LORIOL, 1867) Arnegg, Neuberg, Nattheim, Sirchingen and Wittlingen in S. Germany (GPIT; STAESCHE, 1926; YAMANI, 1975), Stramberg in Czechoslovakia (BOEHM, 1883; REMES, 1903) and near Palermo in Sicily (GEMMELLARO and DI BLASI, 1874; GEMMELLARO, 1875) where the species reaches a maximum height of 58 mm. The range of plical variation is from 30-37 with a mode of 35 (text fig. 86; DE LORIOL, 1867) and L/UA (text fig. 85) and C/L (text fig. 84) are large compared to Kimmeridgian and Oxfordian forms. The typical associated fauna is described on p. 88. S. (S.) palinurus is only known to be an associate at Nattheim and there very rarely. However, it may also be present in Sicily, Provence and Czechoslovakia (see p. 94).

Apart from the occurrences discussed above *S.* (*S.*) subpunctatus is a rare species and none of the other definite records (see Synonymy) are unrelated to the development of reefal facies.

8. INTERPRETATION OF ECOLOGY

S. (S.) subpunctatus is an exemplar of the standard view (HERTLEIN 1969; HALLAM, 1976) that Spondylopecten is a reefrestricted genus. There is no evidence that anything other than reefs were colonised during the U. Jurassic acme of S. (S.) subpunctatus thus the absence of the species from such minor coral stands as were colonised by the less restricted S. (S.) palinurus in the M. Jurassic of Europe need not be construed as evidence against the view that 'P.' erpus is synonymous with S. (S.) subpunctatus (see Section 4). The absence of S. (S.) subpunctatus from genuine coral reefs in the L. Bajocian of E. France can be explained plausibly in several ways (see Section 6) while the general absence of the species from other bioherms in the M. Jurassic of Europe (see Section 5) could be due to their small size and scattered distribution.

Although a temperature dependence might account for the absence of *S.* (*S.*) subpunctatus from some U. Jurassic reefs (see Section 6) the inconsistent distribution in reefs of the same palaeolatitude argues against the general applicability of such an explanation. The abundance of other Spondylopecten species in some of the reefs lacking *S.* (*S.*) subpunctatus rules out an appeal to the unsuitability of the general reef structure (see p. 88) while an explanation in terms of a specific commensal relationship (see p. 96) is excluded by the evidence that *S.* (*S.*) subpunctatus used both corals and sponges as host. The inverse correlation in numbers with *S.* (*S.*) palinurus at cer-

tain localities in the Kimmeridgian and Tithonian suggests a further possible explanation for the irregular distribution of *S. (S.) subpunctatus* in the form of competition. However, the co-occurrence of the two species in large numbers in the Oxfordian (and probably at some localities in the Tithonian) argues against this hypothesis. In any case, if *Spondylopecten* species occupied different microhabitats (see p. 89) it seems unlikely that they would have competed.

The small size, low L/UA and flattened plicae of S. (S.) subpunctatus in sponge 'reef' compared to coral reef facies can be attributed to stunting (see p. 99). Retardation of the rate of size (L) increase while shape (UA) development maintained the same rate would result in small absolute size and low L/UA, and the small size for any given age would cause increased abrasion by the substrate of a standard area of shell surface and could thus be expected to lead to relatively flattened plicae. The small size of the associated faunal elements is further suggestive of the occurrence of stunting although an analysis of growth lines is required to substantiate the hypothesis. Since NITZOPOULOS (1974) estimates the depth of the sponge 'reefs' to have been between 50 and 100 m (compared with a maximum of a few tens of metres for coral reefs) an attractive explanation for stunting is available in terms of the reduced food supply characteristic of greater depths (FURsich and Hurst, 1974).

9. FUNCTIONAL MORPHOLOGY

As for S. (S.) palinurus little can be added to the general interpretation of functional morphology in Spondylopecten presented on p. 89. Variation in convexity provides support for the inference of a 'wedged' mode of life and the higher convexity of S. (S.) subpunctatus compared to S. (S.) palinurus in contemporary populations implies that the former species occupied crevices, fissures etc. of a larger size.

Phyletic decrease in relative convexity might be explained as a bioeconomical correlate of increased size, as has been suggested for *S*. (*S*.) palinurus (but see Section 10). However, unlike the latter species there is no compensatory directional change in the strength and stiffness provided by shell ornamentation, since the mode and range of plical variation seems to oscillate at random. It is the author's impression, nevertheless, that there is a positive correlation between convexity and number of plicae at any one horizon so at least some mechanical interdependence is implied, which may in turn be related to phyletic size change.

The apparent phyletic decrease in relative umbonal angle receives no obvious mechanical explanation and may simply be an artefact of the measuring technique superimposed on the 'proumbonate' form (YAMANI, 1975) of later populations.

The maximum height of 58 mm is within the size range of 'unsupported' bysally attached Recent pectinids (see p. 97) thus *S. (S.) subpunctatus* was probably byssate throughout ontogeny. The inflated form suggests that if it did ever unattach itself *S. (S.) subpunctatus* could only have been a very poor swimmer.

10. ORIGINS AND EVOLUTION

If S. (S.) subpunctatus arose after the Bajocian it is most reasonable to conclude that S. (S.) palinurus was the ancestor

rather than vice versa as suggested on p. 97). However, if, as seems very probable (see Section 5, 7, 8), *S. (S.) subpunctatus* arose in the Aalenian no ancestor is available within the same subgenus. There is no particular reason for concluding that *S. (Plesiopecten) subspinosus* must be the ancestor (see p. 83) and indeed on gross morphological grounds it would seem likely that *S. (S.) subpunctatus* arose from a quite separate stock. The first apparent occurrence of the species (Aalenian; S. Italy, Sicily), outside what subsequently became the main geographic range, provides evidence for such a view and also supports the 'allopatric' model of speciation.

S. (S.) subpunctatus exhibits some evidence for gradual phyletic evolution. Maximum height increases from 32 mm (Oxfordian) to 35 mm (Kimmeridgian) to 58 mm (Tithonian) and within the limits of the available data there appears to be a similar increase through this interval in L/C and L/UA (although see Section 9) of specimens from coral reef facies. Since both L/C and L/UA seem to increase allometrically in ancestral (Oxfordian) populations descendant forms may have arisen by the acceleration of shape development with respect to size. However, heterochrony cannot account for the periodic phyletic additions to the range of plical variation (Oxfordian 29–35, Kimmeridgian 27–31, Tithonian 30–36) so both structural and regulatory genome evolution is implied.

Size increase and stenotopy are suggestive of 'K' selection in the evolution of *S. (S.) subpunctatus*. The possible occurrence of acceleration is however more suggestive of 'r' selection (GOULD, 1977).

Phyletic reduction in relative convexity at least after the Kimmeridgian might have been allowed by the vacation of the appropriate niche through the decline of the relatively low convexity species *S.* (*S.*) palinurus. The mean C/L of Tithonian *S.* (*S.*) subpunctatus is however considerably lower than that of *S.* (*S.*) palinurus at any time and besides the decline in *S.* (*S.*) palinurus may be more apparent than real (see p. 94). An alternative explanation for the reduction in convexity is suggested in Section 9.

Spondylopecten (Spondylopecten) cardinatus (QUENSTEDT 1858) Pl. 3, Figs. 20, 21; text fig. 87

Synonymy

- 1858 Pecten cardinatus sp. nov; QUENSTEDT, p. 627, pl. 78, fig. 1.
- v⁺ 1883 *Pecten spinicostatus* sp. nov; WHIDBORNE, p. 502, pl. 15, figs. 14, 14a.
 - 1916 Aequipecten spinicostatus (WHIDBORNE); PARIS and RICHARDSON, p. 522.
 - 1926 Spondylopecten cardinatus (QUENSTEDT); STAESCHE, p. 110.
- p 1931 Pecten cordiformis GEMMELLARO and DI BLASI; YIN, p. 119, pl. 12, fig. 7, pl. 13, fig. 7 (non GEMMELLARO and DI BLASI sp.).

No trace of the type material of *Pecten cardinatus* QUENSTEDT 1858, p. 627, pl. 78, fig. 1 has yet been found in the QUENSTEDT Collection (GPIT). The figured specimen was derived from the Weisser Jura γ (Kimmeridgian) of Heuburg, S. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

"Werden die Formen größer, dann treten zwar Unsicherheiten in der Bestimmung ein, doch will ich noch einen davon als Pecten cardinatus Tab. 78, Fig. 1 unterscheiden. Die Form nach schließt er sich an globosus Fig. 2 an, aber feine Rippen sind viel breiter. Ich würde ihn dennoch globosus y genannt haben, wenn nicht der Name 'eingezapft' passend auf die Schloßzähne anspielte, welche ich bereits in Handb. Petref. Pag. 507 nachwies. Diese Zahnung des Schlosses ist bei verkieselten so eigentümlich, daß vielleicht später daraus eine besondere Gruppe Cardinaten gemacht werden kann. Kann ich auch bei diesen Verkalkten die Zähne nicht nachweisen, so ist wegen der Analogie an der Existenz nicht zu zweifeln. Die Rippen sind schmal, sehr erhaben, und zu beiden Seiten gehen in den Furchen eigentümliche Zähnchen herab, die sich nicht berühren. Nur in der Jugend scheinen diese Zähnchen wie bei subpunctatus die ganze Furche zu füllen."

2. AMENDED DIAGNOSIS

Distinguished from all other species of *S. (Spondylopecten)* by the number of plicae (42–48).

3. AMENDED DESCRIPTION

Essentially similar to *S.* (*S.*) subpunctatus. Differing by the diagnostic larger number of plicae (see Section 2), whose range of variation, if anything, increases phyletically (see Section 10) and by the generally higher umbonal angle, whose range of variation is from 91° (BM 66825) to 107° (BM L84341).

There is insufficient data to chart phyletic changes in umbonal angle and convexity; C/H for Bajocian forms is plotted in text fig. 87.

The maximum height is 33.5 mm (BM L41934).

4. DISCUSSION

The original description of 'P.' cardinatus QUENSTEDT (see Section 1) does not specify the number of plicae but the figure shows about 36, which suggests that it might be an extreme representative of S. (S.) subpunctatus. There seem to be no traces of the original to the figure (or of any other type specimens) in the QUENSTEDT Collection (GPIT) and it may be lost. However, STAFSCHF (1926) probably had access to the specimen and applied the name to forms with about 45 plicae, as in the species described in Section 3. If it could be established beyond reasonable doubt that QUENSTEDT's type material is lost the most sensible course would be to designate a neotype in conformity with STAESCHE's hypodigm. Until this is done the species described in Section 3 can only provisionally be accorded the name S. (S.) cardinatus.

The sole observed syntype of '*P*.' *spinicostatus* WHIDBORNE (BM 66825; Pl. 3, Fig. 21) possesses about 45 plicae and in its convexity (1) and number of spine rows (2) is indistinguishable from *S.* (*S.*) *cardinatus*.

Of the specimens which YIN (1931) placed in 'P.' cordiformis GEMMELLARO and DI BLASI, only one, with 60 plicae, is referable to that species (= S. (S.) globosus). The remainder, with 42–48 plicae, are inseparable from S. (S.) cardinatus.

Text fig. 87: Spondylopecten (S.) cardinatus - convexity/height.

5. STRATIGRAPHIC RANGE

Although a long-lived species *S. (S.) cardinatus* is only known from a few disjunct records. The earliest is from the Parkinsoni zone (U. Bajocian) of the Cotswolds where at least seven specimens (see Section 7) have been found. STAESCHE (1926) states that the species occurs sporadically in the Oxfordian and Kimmeridgian of S. Germany but it would seem that only two specimens have actually been recovered, one from the U. Oxfordian (GPIT) and one from the Kimmeridgian (STAESCHE's measured specimen). A further two specimens (GPIT, BM 49199) are known from the L. Tithonian of the same area. 15 specimens are recorded from the U. Tithonian of S. France (YIN, 1931).

6. GEOGRAPHIC RANGE

S. (S.) cardinatus is unknown outside Europe. Within Europe, records are widespread but patchy (see Section 5). They seem to indicate a gradual southward migration.

7. DESCRIPTION OF ECOLOGY

S. (*S.*) cardinatus is found in the U. Coral Bed (U. Bajocian) at Dundry nr. Bristol and its probable lateral equivalent at Cleeve Cloud nr. Cheltenham (assoc. fauna p. 95). Seven specimens are contained in the BM, three with 43 plicae, three with 44 and one with 46. The maximum height is 33.5 mm (BM L41934).

Specimens from the Oxfordian and Kimmeridgian of S. Germany (see Section 5) are, according to STAESCHE (1926), derived from sponge 'reef' facies (fauna p. 101). STAESCHE cites a height of 31 mm for a Kimmeridgian specimen. Specimens from the L. Tithonian of Nattheim (Swabian Alb) and from the U. Tithonian of Languedoc (see Section 5) are derived from coral reef facies (fauna p. 88) and have a range of plical variation from 42–48. The largest known specimen has a height of about 25 mm (BM 49199).

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that coralliferous deposits constituted the most favourable environment for *S. (S.) cardinatus*. Both short-lived coral stands and reefs seem to have been suitable (cf. HERTLEIN, 1969; HALLAM, 1976) although by no means all such coral accumulations were colonised. In particular, the absence of S. (S.) cardinatus from the coralliferous deposits in the Oxfordian of England and E. France, the Oxfordian and Kimmeridgian of the Jura, and the Tithonian of the Franconian Alb, Czechoslovakia and Sicily, is very noticeable. An explanation in terms of the general structure of the coral accumulations (see p. 88) is precluded by the presence of other Spondylopecten species and the invocation of interspecific competition (see p. 101) does nothing to solve the problem since at one time or another S. (S.) cardinatus occurs with abundant examples of each of the other S. (Spondylopecten) species (e.g. with S. (S.) palinurus in the U. Bajocian of England, with S. (S.) subpunctatus in the U. Tithonian of France and with S. (S) globosus in the L. Tithonian of S. Germany). A highly specific commensal relationship (see p. 96) seems to be ruled out by the fact that S. (S.) cardinatus was apparently able to colonise sponge as well as coral accumulations and a temperature control can be discounted because the distribution of the species is still inconsistent in coralliferous deposits at the same palaeolatitude (e.g. in the S. German Tithonian).

9. FUNCTIONAL MORPHOLOGY

As for other species of *S*. (*Spondylopecten*) little can be added to the general interpretation of functional morphology presented for the genus as a whole (p. 89). The considerable variation in convexity of *S*. (*S*.) cardinatus is further suggestive of a 'wedged' mode of life. The comparable mean convexity to that of both *S*. (*S*.) palinurus and *S*. (*S*.) subpunctatus suggests that cavities of the order of size occupied by these species were also colonised by *S*. (*S*.) cardinatus.

The small maximum height (33.5 mm) indicates that *S. (S.) cardinatus* could have remained byssate throughout ontogeny (see p. 101) and it is likely that, even if it did unattach itself, swimming would have been severely restricted by the inflated form.

10. ORIGINS AND EVOLUTION

Assuming that S. (S.) subpunctatus arose in the Aalenian (see p. 100) the latter is the most likely ancestor for S. (S.) cardinatus. Otherwise the only possible ancestor within the subgenus is S. (S.) palinurus. In neither case could trans-specific evolution have been based on heterochrony so some major change in the genome is implied. There is no evidence that this occurred gradually.

There is too little data to allow a confident assertion of the existence of phyletic evolution within *S. (S.) cardinatus.* However a slight phyletic increase in the range of plical variation (from 43–46, U. Bajocian to 42–48, U. Tithonian) and a decrease in maximum height (from 33.5 mm, U. Bajocian to 31 mm, Kimmeridgian to about 25 mm, U. Tithonian) is indicated by the few available specimens. Both trends would seem to indicate 'r' selection (GOULD, 1977) in contrast to the apparent field occurence of the species, as a fairly rare element in high diversity faunas (see Section 7), which suggests the prevalence of 'K' selection.

Spondylopecten (Spondylopecten) globosus (QUFNSTEDT 1843) Pl. 3, Figs. 22–24; text fig. 88

Synonymy

pv* 1843	Pecten globosus sp. nov; QUENSTEDT, p. 476.
v* 1852	Pecten globosus QUENSTEDT; QUENSTEDT, p. 507,
	pl. 40, fig. 46 (non fig. 45).
v* 1858	Pecten globosus QUENSTEDT; QUENSTEDT, p. 755,
	pl. 92, fig. 20 (non pł. 78, fig. 2).
non 1862	Pecten Globosus QUENSTEDT; THURMANN and
	ÉTALLON, p. 250, pl. 35, fig. 1.
non 1867	Pecten globosus QUENSTEDT; DE LORIOL, p. 335,
	pl. 13, fig. 3.
1874	Pecten cordiformis sp. nov; GEMMELLARO and DI
1075	BLASI, p. 108, pt. 2, tigs. 11–15.
18/5	Pecten cordiformis GEMMELLARO and DI BLASI;
1002	GEMMELLARO, p. 43.
1883	Pecten coralformis GEMMELLARO and DI DLASI,
1003	Spondulus alabasus (OUENSTEDT): BOEHM D 644
1003	pt 70 fire 3 4
2 1893	Pecten globosi Ouenstedt: Siemiradzki, p. 119.
non 1898	Pecten (Spondylopecten) globosus OUENSTEDT:
1011 1070	PHILIPPI, p. 620, text figs. 6, 7.
1898	Spondvlopecten G. Boehmi sp. nov; PHILIPPI,
	p. 620.
1903	Pecten cordiformis GEMMELLARO and DI BLASI;
	REMES, p. 202, pt. 29, fig. 6.
1903	Pecten G. Boehmi PHII IPPI; REMES, p. 205.
non 1903	Pecten (Spondylopecten) globosus QUENSTEDT;
	Remfs, p. 205.
? 1905	Pecten (Chlamys) globosus QUENSTEDT; KILIAN
	and Guebhard, p. 817.
1910	Pecten globosus QUENSTEDT; LISSAJOUS, p. 362,
1013	pl. 10, fig. 5.
non 1913	Pecten globosus QUENSIEDI; JOUKOWSKY and
10.20	PAVKE, p. 40, pl. 17, figs. 5-6.
1920	EAUDE-MADCHERIT D 57
non 1920	Pecten (Spondylopecten) globosus OUENSTEDT:
1011 1720	FAURE-MARGUERIT, D. 60.
1926	Spondylopecten globosus (QUENSTEDT);
	STAESCHE, p. 110.
non 1931	Pecten (Spondylopecten) globosus QUENSTEDT;
	YIN, p. 118, pt. 12, figs. 3-6.
p 1931	Pecten cordiformis GEMMELLARO and DI BLASI;
	YIN, p. 119, pl. 12, fig. 7, pl. 13, fig. 7.
1936	Spondylopecten globosus (QUENSTEDT); DFCHAS-
	EAUX, p. 66.
? 1959	Spondylopecten globosus (QUENSTEDT); HÖLDER
	and Ziegler, p. 165.
v 1975	Sponaylopecten globosus (QUENSTEDT); YAMANI,
	p. 62, pl. 3, figs. 7-9.
	Land Derter 11 Original
	Lectotype of Peeten globosus QUENSTEDT
	1843 n 4/6 designated herein: GPU

1843, p. 476 designated herein; GP1T 2-40-46; figured QUENSTEDT, 1852, pl. 40, fig. 46, 1858, pl. 92, fig. 20; Pl. 3, Figs. 22, 23 herein; H: 23, L: 25, AH: 7.5, PH: 5.5, I: 16, C: 24, UA: 94, PL: 63; Malm ϵ (L. Tithonian; see p. 105), Natheim, Swabia.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Beide Schalen sind aufgebläht, wie die gewölbte Schale des *P. gryphaeatus* der Kreide, und nähern sich insofern aufeinander geklappt der Kugelform, die Rippen markiert und nie dichotum, große Symmetrie, wie bei *Pectunculus*, auch stehen die Wirbel weit voneinander. Dem Pecten subpunctatus sehr verwandt, nur werden sie viel größer.

Bemerkenswert sind die Formen welche dem *Pecten aequicostatus* Sow. (gryphaeatus Schl.) gleichen, und die namentlich im weißen Korallenkalke von Arnegg wie von Au bei Kelheim in so großer Häufigkeit vorkommen. Auch in den kieseligen Kalken von Nattheim fehlen sie nicht, und auffallenderweise erheben sich neben dem deltaförmigen Schloßmuskelloch zwei Zähne, von denen besonders der vordere sehr lange und kräftig wird.⁴

2. AMENDED DIAGNOSIS

Distinguished from all other species of *S. (Spondylopeeten)* by the number of plicae (51–71).

3. AMENDED DESCRIPTION

Essentially similar to *S. (S.) cardinatus.* Differing by the diagnostic larger number of plicae (see Section 2), whose median value, if anything, oscillates phyletically (see Section 10), and by the generally lower umbonal angle and higher convexity. There is insufficient data from which to accurately assess the range of variation in the latter parameters. The lectotype of the species (see above) probably exhibits fairly typical proportions. The maximum height is 26.9 mm (STAESCHE, 1926).

4. DISCUSSION

QUENSTEDT'S (1843) original hypodigm for 'P.' globosus is a matter of some doubt. A comparison with 'P.' subpunctatus MUNSTER combined with a reference to very high convexity in the original description (see Section 1) suggests that it included forms referable to both S. (S.) subpunctatus and the species described in Section 3. This interpretation is borne out by the fact that the QUENSTEDT Collection (GP1T) used to contain two specimens labelled 'P.' globosus, one with moderate convexity and about 30 plicae and the other with high convexity and about 60 plicae, and by the fact that both specimens were figured by QUENSTEDT as 'P.' globosus in later works (1852, 1858). For the purposes of this work it is desirable to restrict QUENSTEDT's taxonomic species by designating one or other specimen as the lectotype. However, following Recommendation 74A of the ICZN (N. R. STOLL et al., 1964) due weight is given in the choice to valid restrictions of the species by previous authors, as discussed below.

THURMANN and ÉTALLON (1862), DE LORIOL (1867), JOUKOWSKY and FAVRE (1913), PHILIPPI (1898), REMES (1903), FAURE-MARGUERIT (1920) and YIN (1931) all apply QUENS-TEDT'S specific name to forms with about 30 plicae (see p. 99). However, only in the last four cases is it clear, from the fact that other specimens with about 60 plicae are referred to different species, that these authors actually restricted their concept of QUENSTEDT'S taxonomic species to forms with about 30 plicae. In fact, PHILIPPI'S citation of the specimen figured in pl. 92, fig. 20 of Der Jura (the form with about 60 plicae) as type for his restricted concept of the species effectively re-expands his hypodigm to that probably envisaged originally by QUENSTEDT.

BOEHM (1883), LISSAJOUS (1910), STAFSCHE (1926), DE-CHASEAUX (1936) and YAMANI (1975) apply QUENSTEDT'S specific name to forms with about 60 plicae. All but Lissajous give a clear indication that their concept of QUENSTEDT's taxonomic species is restricted to such forms by referring other specimens with about 30 plicae to different species. STAESCHE suggests moreover that QUENSTEDT himself may have intended such a restriction in Der Jura. It is STAESCHE's contention that in the latter work (1858), in which 'P.' aequatus, a new species with about 30 plicae is also figured, QUENSTEDT applied the name 'P.' globosus by mistake to an illustration of the cardinal area of a form with about 30 plicae which he really meant to label as a second figure of 'P.' aequatus. On these grounds STAESCHE draws the logical conclusion that in 1858 QUENSTEDT restricted his hypodigm for 'P.' globosus to forms with about 60 plicae. There is however no a priori reason to think that QUENSTEDT made a nomenclatural error and furthermore there are no grounds for believing, as STAESCHF seems to imply, that QUENSTEDT intended such a restriction all along. The description in 1843 and the illustrations in 1852 belie this reasoning (see above). On the available evidence one must draw the conclusion that QUENSTEDT erected 'P.' aequatus as a species distinct from the original specimen of 'P.' globosus with about 30 plicae.

In summary it can be said that previous restricted usage of QUENSTEDT's taxonomic species is, on the basis of specimens described in the literature studied by the author, apparently equally divided between forms with about 30 and forms with about 60 plicae. Weight of numbers therefore gives no lead in the selection of an appropriate lectotype for 'P.' globosus. The first author to apply QUENSTEDT's specific name in a clearly restricted sense was BOEHM (1883) who used the name for forms with about 60 plicae. Therefore on grounds of historical precedence the original specimen with about 60 plicae is the most appropriate choice for the lectotype of 'P.' globosus. Since this specimen appears to be the only one remaining of the two originally housed in the GP1T such a selection also avoids any possible need to designate a neotype. Accordingly the specimen with about 60 plicae (Pl. 3,

Figs. 22, 23) is herein designated as lectotype. As a result *Spondylopecten G. Boehmi* PHILIPPI, which was erected for this and another specimen (following restriction of QUENS-TEDT's taxonomic species to the original specimen with about 30 plicae), would seem to become a junior objective synonym, and if so must be rejected.

Non-synonymous and questionably synonymous usages of QUENSTEDT's specific name quoted in the synonymy are discussed on p. 99. All other usages are within the present author's hypodigm for *S.* (*S.*) globosus (see Section 3).

'P.' cordiformis GEMMELLARO and DI BLASI is inseparable from S. (S.) globosus by its inflation (C/L: 0.94) and number of plicae (56). Nevertheless BOFHM (1883) considered that the two species should be placed in separate genera (cordiformis in Pecten, globosus in Spondylus) on the basis of the lack of a cardinal area in the former and of a byssal notch in the latter. However, STAFSCHE (1926) has pointed out that this is merely the result of poor preservation and that therefore the species cannot be separated at any level. Of the forms referred to GEMMELLARO and DI BLASI'S species by YIN (1931) only one, with 60 plicae, is referable to S. (S.) globosus. The remainder, with 42–48 plicae, must be assigned to S. (S.) cardinatus.

5. STRATIGRAPHIC RANGE

An indeterminate number of specimens from the U. Oxfordian of the Mâconnais (LISSAJOUS, 1910; DECHASEAUX, 1936) constitutes the first certain record of S. (S.) globosus. YAMANI (1975) states that the species occurs in the Callovian of S. France but provides no evidence in the form of a reference. His record of the species from the Kimmeridgian of S. Germany is also doubtful since it is probably based on QUENSTEDT'S (1843) description of 'P.' globosus from Kelheim (see Section 1), which may in fact refer to S. (S.) subpunctatus (see Section 4). No museum specimens of S. (S.) globosus are known from the latter locality but examples of S. (S.) subpunctatus are quite common. A specimen of S. (S.) globosus labelled 'Malm ϵ , Ulm' in the GPIT could well be from the L. Tithonian rather than the Kimmeridgian, as the

Text fig. 88: Spondylopecten (S.) globosus - European distribution.

label implies. Museum specimens from the L. Tithonian reef facies in S. Germany are invariably incorrectly labelled in this way. Since the only other record of Kimmeridgian S. (S.)globosus (HOLDER and ZIEGLER, 1959) is of questionable validity (see p. 99) there are no unequivocal occurrences of the species in the stage.

S. (S.) globosus becomes locally common in the L. Tithonian and continues thus into the U. Tithonian (GEMMELLARO and DI BLASI, 1874; GEMMELLARO, 1875; BOEHM, 1883; FAURE-MARGEURIT, 1920; YIN, 1931).

6. GEOGRAPHIC RANGE

S. (*S.*) globosus is unknown outside Europe. Within Europe (text fig. 88) the species is restricted to the central and southern parts of the continent, where its local distribution is intimately linked with that of coralliferous deposits (see Sections 7, 8).

7. DESCRIPTION OF ECOLOGY

The records of *S*. (*S*.) *globosus* from the U. Oxfordian of the Mâconnais (see Section 5) are from coralliferous limestones. The range of plical variation is apparently from 55–65 (DECHASEAUX, 1936).

In the L. Tithonian S. (S.) globosus is reported to be common in the coral reefs at Nattheim, Sirchingen and Wittlingen in Swabia (STAESCHE, 1926) and to also occur in the same facies at Neuburg in Franconia (YAMANI, 1975). The range of plical variation is from 51 (GPIT) – 65 (STAESCHE, 1926) and the maximum height is 26.9 mm (STAESCHE, 1926). The species is also known from coral reef facies in the U. Tithonian of S. France (FAURE-MARGUERIT, 1920; YIN, 1931), Sicily (GEM-MELLARO and DI BLASI, 1874; GEMMELLARO, 1875) and Czechoslovakia (BOEHM, 1883; REMES, 1903) where it is particularly abundant and reaches a maximum height of 24 mm (BM L23886). The range of plical variation in U. Tithonian forms is from 56 (GEMMELLARO and DI BLASI, 1874) to 71 (BM LL17205). The typically associated fauna in Tithonian occurrences of S. (S.) globosus is described on p. 88.

There are no certain occurrences of S. (S.) globosus apart from those discussed above.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that S. (S.) globosus was a coral reef-dwelling species. However, by no means all such reefs were colonised. The absence of the species from reef and reef-derived sediments in the Oxfordian of England, N. France and N. Germany (see Section 6) could perhaps be the consequence of a temperature restriction. However, the inconsistent distribution in coral reefs at approximately the same palaeolatitude (presence in the Tithonian of Czechoslovakia and S. Germany, absence from the Oxfordian of the E. Paris Basin, Oxfordian and Kimmeridgian of the Jura, Kimmeridgian of La Rochelle and probably also Kelheim) argues against this hypothesis. While the general reef structure might be the cause of the lack of S. (S.) globosus at La Rochelle (see p. 88) it cannot be invoked as an explanation for absences from the other reefs, in each of which at least one of the other S. (Spondylopecten) species is known to occur commonly. Competitive exclusion by *S.* (*S.*) palinurus is another possible explanation since the latter is present at all of the above localities where *S.* (*S.*) globosus is absent, apart from Kelheim. Moreover, the two species are not known to occur together in large numbers at any locality. However, if *Spondylopecten* species occupied different microhabitats (see p. 89) it seems unlikely that they would have competed and indeed there is little evidence of competition in general (see p. 103). An alternative explanation for the distribution of *S.* (*S.*) globosus in terms of a commensal relationship with one particular coral species must also be considered doubtful on the basis of the failure of such a hypothesis (see p. 96) to account for the irregular distributions of other *S.* (*Spondylopecten*) species. There is, however, no specific reason for rejection in the case of *S.* (*S.*) globosus.

9. FUNCTIONAL MORPHOLOGY

Little can be added to the general interpretation of functional morphology in *Spondylopecten* presented on p. 89.

The maximum height of 26.9 mm indicates that the species could have remained byssate throughout ontogeny (see p. 101) while the inflated form renders it likely that if it unattached itself at all, *S.* (*S.*) *globosus* could only have been a very inefficient swimmer.

Such phyletic changes in height and plical variation as may have occurred (see Section 10) are too small to have had any effect on the mechanics of the shell (cf. pp. 97, 101).

10. ORIGINS AND EVOLUTION

The most likely ancestor for *S*. (*S*.) globosus is *S*. (*S*.) cardinatus. A 'genetic revolution' presumably accompanied speciation since the lack of ancestral allometry rules out evolution by heterochrony. There is no evidence that speciation occurred gradually, but some suggestion that it occurred, at least on a small scale, allopatrically, since the first occurrence of *S*. (*S*.) globosus is as an isolated population (U. Oxfordian, Mâconnais) apparently at the edge of the contemporaneous geographic range of *S*. (*S*.) cardinatus.

The apparent phyletic oscillation in the median number of plicae (60, U. Oxfordian; 58, L. Tithonian; 63/64, U. Tithonian) may well be more a consequence of the limited number of museum specimens available to the author than a reflection of a real phenomenon.

Museum specimens indicate no significant change in maximum height in the passage from L. (26.9 mm) to U. (24 mm) Tithonian.

Genus CAMPTONECTES AGASSIZ in MEEK 1864

Type species. SD; Stoliczka 1871, p. 425; *Pecten lens* J. SOWERBY 1818, p. 3, pl. 205, figs. 2, 3; Corallian Beds (Oxfordian) of the Oxford district.

AMENDED DIAGNOSIS

Part or all of exterior ornamented with fine, oblique, divergent, curved, crenulated, commonly punctate striae and concentric lines or raised laminae. L. Jur. – U. Cret., cosmop.

DISCUSSION

HERTLEIN'S (1969: N351) diagnosis for *Camptonectes* has been slightly altered so as to expressly include forms (e. g. C. (C.) subulatus, C. (Camptochlamys) clathratus) which only have the distinctive divaricate ornament on a small part of the shell. Such forms are undoubtedly related to the more typical members of the genus well provided with divaricate ornament. Examples of C. (C.) subulatus which possess only a small byssal notch (e. g. Pl. 4, Fig. 7) closely resemble the contemporaneous species Entolium (E.) lunare. They may, however, be distinguished by the features described on p. 35 thus there is little evidence to support STAESCHE'S (1926: 55) contention that Camptonectes and Entolium are convergent in the L. Jurassic.

Subgenus CAMPTONECTES s. s.

(Errors Campstonectes VON TEPPNER 1922 [nom. null.] Campitonectes SALISBURY 1939 [nom. null.] Camponectes VYALOV and KOROBKOV 1939 [nom. null.])

AMENDED DIAGNOSIS

Concentric sculpture of fine growth lines. L. Jur. (Hettang.) – U. Cret. (Maastricht.), cosmop.

DISCUSSION

In his diagnosis, HERTLEIN (1969: N351) stated that the first occurrence of *C. (Camptonectes)* was in the U. Lias (Toarcian). *C. (C.) subulatus* and *C. (C.) auritus* are known, however, from the lowermost horizons in the Lias.

In well preserved material four groups may be distinguished in Jurassic *C. (Camptonectes)* on the following basis:

- Sub-ovate disc, fine divaricate striae on all parts of disc (= C. (C.) virdunensis).
- Sub-orbicular disc, fine divaricate striae on all parts of disc 6= C. (C.) auritus).
- 3. Sub-orbicular disc, coarse divaricate striae on all parts of disc (= *C*. (*C*.) *laminatus*).
- Sub-orbicular disc, fine divaricate striae restricted to anterior and posterior margins of disc (= C. (C.) subulatus).

As pointed out by ARKELL (1930a), Group 3 may also be distinguished from Group 2 by the presence of comarginal lamellae on the anterior auricle of the left valve. Contrary to ARKELL's opinion lamellae are not consistently developed on the posterior auricle of the right valve in Group 3 and it is not possible to distinguish the two groups on the basis of H/L (text figs. 98, 108) or H/UA (text figs. 99, 109). Group 3 almost entirely replaces Group 2 in the Bathonian of Europe yet there are no certain records of Group 2 elsewhere to evince a migration. The possibility therefore that the coarser ornament distinguishing Group 3 is merely an ecophenotypic response of Group 2 to Bathonian environments cannot be entirely discounted. An analysis along the lines adopted for *Radulopecten vagans* (see JOHNSON, 1981) could be used to text this hypothesis. However, until this is undertaken it seems preferable to treat the two groups as separate species. A similar approach is taken for Group 1, in which the high H/L (text fig. 118) and H/UA (text fig. 119) might merely be an ecophenotypic response of Group 2 to the coral reef habitat. Recent species from such environments often take on an elongated shape as the result of the physical restriction on growth imposed by a dense coral framework (WALLER, 1972b).

Although within Group 2 there are systematic variations in metric proportions with horizon and geography these are more easily interpreted as an expression of respectively phyletic evolution and ecophenotypic variation (see p. 117) in a single species rather than as a result of the existence of numerous species within Group 2.

Camptonectes (Camptonectes) subulatus (MUNSTER 1836) Pl. 4, Figs. 3–5, 7, 8, ?Figs. 6, 9; text figs. 89–97

Synonymy

- ? 1833 Pecten textilis sp. nov; MUNSTER in GOLDFUSS, p. 43, pl. 89, figs. 3a-d.
- 1836 Pecten subulatus sp. nov; MUNSTER in GOLDFUSS, p. 73, pl. 98, figs. 12a-c.
- v^{*} 1836 Pecten calvus sp. nov; GOLDFUSS, p. 74, pl. 99, figs. 1a–c.
 - 1836 Pecten substriatus sp. nov; ROEMER, p. 71.
- ? 1839 Pecten dextilis MUNSTER; ROEMER, p. 28, pl. 28, figs. 24a-c.
- v^{*} 1850 Pecten Castor sp. nov; d'Orbigny, v. 1, p. 220 (Boule, 1907, v. 2, p. 167, pl. 23, fig. 15).
- (?) 1850 Pecten subulatus MUNSTER; D'ORBIGNY, v. 1, p. 257.
- (?) 1850 Pecten calvus GOLDFUSS; D'ORBIGNY, v. 1, p. 257.
- ? 1858 Pecten amatus sp. nov; ANDLER, p. 644.
- v*? 1858 Pecten disparilis sp. nov; QUENSTEDT, p. 47, pl. 4, figs. 8, 9.
- v* 1858 Pecten punctatissimus sp. nov; QUENSTEDT, p. 79, pl. 9, fig. 14.
- v^{*} 1858 Pecten strionatis sp. nov; QUENSTEDT, pp. 147, 183, pl. 18, fig. 21, pl. 23, fig. 2.
- ? 1858 Pecten Trigeri sp. nov; OPPEL, p. 103.
- 1863 Pecten subulatus MUNSTER; SCHLONBACH, p. 544.
 ? 1865 Pecten punctatissimus QUENSTEDT; TERQUEM and PIETTE, p. 103, pl. 12, fig. 62.
- 1865 Pecten jamoignensis sp. nov; TERQUEM and PIFTTE, p. 104, pl. 12, figs. 20, 21.
- v*? 1866 Pecten Etheridgii sp. nov; TAWNEY, p. 81, pl. 3, fig. 4.
 - 1870 *Pecten Lobbergensis* sp. nov; EMERSON, p. 318, pl. 9, figs. 4, 4a, 4b.
- (?) 1871 Pecten subulatus MUNSTER; BRAUNS, p. 393.
- (?) 1876 Pecten calvus GOLDFUSS; TATE and BLAKE, p. 362.
- (?) 1876 Pecten punctatissimus QUENSTEDT; TATE and BLAKE, p. 362.
 - 1876 Pecten Lobbergensis EMERSON; TATE and BLAKE, p. 362.
- (?) 1876 Pecten substriatus ROEMER; TATE and BLAKE, p. 362.
 - 1878 Pecten (Amusium) Bellampensis sp. nov; GEM-MELLARO and DI BLASI, p. 403, pl. 30, figs. 15, 16.
 1881 Pecten Tullbergi sp. nov; LUNDGREN, p. 28, pl. 5,
 - figs. 11, 12.
- v¹⁸ 1884 Pecten punctatus sp. nov; SIMPSON, p. 171.
- ? 1888 Pecten Lundgreni sp. nov; MOBERG. p. 35, pl. 1, figs. 27–32.

(?) 1888	Pecten subulatus MUNSTER; MOBERG, p. 36, pl. 1,
1895	IIg. 33. Perten Rinki en nous LUNDOREN D. 200 pl. 3
1075	fig. 14.
? 1906	Pecten cfr. Bellampensis GEMMELLARO and DI BLASI: FUCINI, p. 617, pl. 11, fig. 1.
(?) 1907	Pecten (Entolium?) calvus GUIDEUSS: IOLY, p. 76
1907	Pecten (Entolium?) jamoignensis TERQUEM and PIETTE; JOLY, p. 76.
1909	Pecten (Chlamys) subulatus MUNSTER; TRAUTH, p. 90
(?) 1916	Pecten strionatis QUENSTEDT; JAWORSKI, p. 417.
? 1917	Pecten tingensis sp. nov: TILMANN p. 674 pl. 24
	fig. 6.
v* 1923	Pecten dehmensis sp. nov; ERNST, p. 54, pl. 1, figs. 10, 11.
1923	Pecten (Pleuronectites) sublaevigatus sp. nov; ERNST, p. 57, pl. 1, fig. 9.
1926	Chlamys (Camptonectes?) cf. lohbergensis (EMER- SON); COX, p. 180.
? 1926	Chlamys Trigeri (OPPEL); STAESCHE, p. 56.
v 1926	Chlamys subulata (MUNSTER); STAESCHE, p. 57, pl. 2, figs. 9, 10, pl. 5, fig. 6.
v non 1926	Chlamys calva (GOLDFUSS); STAESCHE, p. 58, pl. 2, figs. 11, 12.
? 1926	Chlamys substriata (ROEMER); STAESCHE, p. 63.
1926	Chlamys punctatissima (QUENSTEDT); STAESCHE, p. 73.
v 1926	Camptonectes aff. sublaevigato (ERNST); STAE- SCHE, p. 75, pl. 3, figs. 1, 8, 11.
(?) 1928	Chlamys substriata (ROEMFR); COX, p. 242.
v 1934	Chlamys substruata (ROEMER); KUHN, p. 472, pl. 18, figs. 6a, 6b.
(?) 1934	Chlamys substruata var. rinki (LUNDGREN); Rosenkrantz, p. 113.
1934	Camptonectes aff. sublaevigatus (ERNST); ROSEN- KRANTZ, p. 117.
v 1935	Chlamys substriata (ROEMER); KUHN, p. 246, pl. 12, fig. 35.
1936	Pecten (?Chlamys) jamoignensis TERQUEM and PIETTE; DECHASEAUN, p. 28.
1936	Pecten (?Chlamys) subulata MUNSTER; DECHAS- EAUX, p. 28.
(?) 1936	Chlamys ? punctatissimus (QUENSTEDT); DECHAS- EAUX, p. 29.
v 1936	Camptonectes sp; DECHASEAUX, p. 29, pl. 4, figs. 7, 8.
(?) 1942	Chlamus substriata var sinki (LUNIDGRENI), RO

- Chlamys substriata var. rinki (LUNDGREN); RO-SENKRANTZ, pp. 23, 29, 30, 32, 38.
 - 1948 Pecten (Camptonectes) sp; DUBAR, p. 161, pl. 13, fig. 2.
 - 1951 Chlamys subulata (MUNSTER); TROEDSSON, p. 212, pl. 20, fig. 17.
 - 1951 Chlamys tullbergi (LUNDGREN); TROEDSSON, p. 213, pl. 23, figs. 5, 6.
- non 1951 Entolium calvum (GOLDFUSS); TROEDSSON, p. 217, pl. 20, figs. 9-13.
- non 1951 Entolium lundgreni (MOBERG); TROEDSSON, p. 218, pl. 20, figs. 4-8.
 - 1956 Chlamys subulata (MUNSTER); MELVILLE, p. 121, pl. 5, fig. 3.
- non 1956 Chlamys subulata securis (DUMORTIER); MEL-VILLE, p. 121, pl. 5, figs. 4, 5.
 - 1956 Chlamys ?calva (GOLDFUSS); MELVILLE, p. 122, pl. 5, figs. 1, 2.
 - 1956 Camptonectes jamoignensis (TERQUEM and PIETTE); MELVILLE, p. 123.
 - 1956 Camptonectes lohbergensis (EMERSON); MEL-VILLE, p. 123, pl. 5, fig. 6.
 - v 1956 Camptonectes mundus sp. nov; MELVILLE, p. 124, pl. 1, figs. 1-4.

- 1963 Camptonectes lobbergensis (EMERSON); HALLAM, p. 561.
- (?) 1966 Entolium cf. subulatum (MUNSTER); BEHMEL and GEYER, p. 26.
 - 1967 Camptonectes lobbergensis (EMERSON); BERRIDGE and IVIMEY-COOK, p. 160.
 - 1967 Camptonectes mundus MELVILLE; BERRIDGE and IVIMEY-COOK, p. 160.
- (?) 1967 Chlamys subulata (MUNSTER); BERRIDGE and IVIMEY-COOK, p. 160.
- (?) 1968 Chlamys (?) calva (GOLDFUSS); WOBBER, p. 306. (?) 1968
- Chlamys subulata (MUNSTER); WOBBER, p. 306. (?) 1971
 - Chlamys subulata (MUNSTER); HALLAM, pp. 242, 243.
- ? 1972 Camptonectes (Camptonectes) fromageti sp. nov; HAYAMI, p. 195, pl. 34, figs. 5-8.

No trace of the type material of Pecten subulatus MUNSTER in GOLDFUSS 1836, p. 73, pl. 98, figs. 12a-c has yet been found in the MUNSTER/GOLDFUSS Collections in BSPHG and GPIB. The material was derived from the 'Liaskalk' (L. Jurassic) of S. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Pecten testa oblique ovali aequivalvi inaequilaterali convexo-plana laevi, striis radiantibus et concentricis vix conspicuis, auricula antica elongata basique sinuata.

E montibus Bavaricus et Wurtembergicis M. M.

Gleichklappig, schief oval-kreisrund, flach-convex, glatt und glänzend. Durch Vergrößerung erkennt man sehr zarte, gedrängte konzentrische Streifen und einige ausstrahlende Linien. Die Ohren sind in etwas abweichender schiefer Richtung abgeschnitten, die hintern sehr kurz, die vordern aber weit über den Rand hinaus verlängert.

Findet sich im Liaskalk bei Altdorf, Amberg, Ellwangen und Wasser-Alfingen."

2. AMENDED DIAGNOSIS

Distinguished from C. (C.) auritus and C. (C.) laminatus by the restriction of surficial ornament to the anterior and

Text fig. 89: Camptonectes (C.) subulatus - height/length.

Text fig. 90: Camptonectes (C.) subulatus - height/umbonal angle.

posterior margins. Distinguished from *C. (C.) virdunensis* by the more orbicular disc.

3. AMENDED DESCRIPTION

Disc sub-orbicular, slightly higher than long at all stages in ontogeny (text fig. 89); maximum height 52.5 mm (GPIT). Umbonal angle very variable (text fig. 90) but increasing during ontogeny to produce concave dorsal margins. Disc flanks very low.

Equilateral; inequivalve, low convexity, left valve slightly more convex than right.

Intersinal distance variable, greater in left valve than right (text figs. 91, 92) but increasing isometrically in both. Depth of byssal notch very variable (text fig. 93) but usually increasing isometrically.

Auricles well demarcated from disc, variable in size, anterior larger than posterior. Posterior auricles meeting hinge line at an obtuse angle and disc at an acute angle. Anterior auricles meeting hinge line at about 90°; that of left valve meeting disc at an acute angle, that of right valve meeting disc at 90° or more. All auricles ornamented with fine comarginal striae and where well preserved, fine divaricate striae.

Height of anterior auricle and length of posterior hinge increasing with approximate isometry (text figs. 94, 95).

Text fig. 91: Camptonectes (C.) subulatus – intersinal distance on left valve/length.

Length of anterior hinge possibly increasing at a decreasing rate (text fig. 96).

Centre of disc exterior smooth in both valves. In well preserved specimens anterior and posterior margins, particularly in the dorsal region, bearing fine divaricate striae (Pl. 4, Fig. 3), rendered 'punctate' by the intersection of comarginal striae. Inner shell layers formed into radial striae of low amplitude (Pl. 4, Fig. 8).

Shell very thin. Outer layer including at least one sub-layer of divaricate fibres.

Text fig. 92: Camptonectes (C.) subulatus = intersinal distance on right valve/length.

4. DISCUSSION

The taxonomy of the weakly ornamented L. Jurassic Pectinidae has been a subject of considerable confusion. Distinction at the generic level is dealt with on pp. 35, 107. The proliferation of names at the specific level has resulted largely from a failure to appreciate the wide but continuous range of variation in metric proportions of the species described in Section 3 and the range of sculptural patterns in the latter resulting from abrasion and dissolution of the thin shell. Four main sculptural patterns (analogous to those observed in *Propeamussium (P.) pumilum* by HOLDER (1978)) can be recognised in the passage from complete shell preservation to internal mould.

a) Perfect preservation produces shells conforming to the description in Section 3.

b) Loss of the very thin shell layer bearing *Camptonectes*ornament' on the lateral disc margins and auricles, leaves a smooth but relatively thick shell bearing traces only of comarginal striae (Pl. 4, Figs. 4, 7).

c) Loss of a further shell layer results in the exposure of radial striae which form a reticulate pattern with the comarginal striae (Pl. 4, Fig. 5; postero-ventral of centre), this standing out as rows of comarginal 'punctae' (cf. a) in suitably fine sediment.

d) Loss of the remainder of the outer layer leaves only the radial striae of the inner shell layers which persist to the internal shell surface and thus appear on moulds (Pl. 4, Fig. 8).

Paired valves often exhibit different sculpture, with the right valve usually representing a more advanced state of abra-

sion, presumably as the result of more frequent contact with the substratum during life.

BM L40676 (Pl. 4, Fig. 5) exhibits, in different parts of the shell, each of the first three preservation states referred to above, thus convincingly demonstrating that they do not reflect genetic differences. That forms corresponding to preservation state d) are conspecific is made clear by the fact that their metric proportions (specimens marked with a glyph in text figs. 89–96) are inseparable from more perfectly preserved specimens. However, the development of fine radial striae is not restricted to the species under discussion but is also seen in, for instance, small or abraded examples of the 'fine' phenotype of *Chlamys (Ch.) textoria*. Thus, where original material and figures are poor or lacking and descriptions inadequate, there remains considerable taxonomic uncertainty (see below).

Type and original specimens and figures of type specimens apparently corresponding to preservation state a) are: –

- 1. The holotype (OD) of *Camptonectes mundus* MELVILLE (IGS 28760).
- 2. The original of C. sp. DECHASEAUX (NM).
- 3. The original figure of C. (C.) fromageti HAYAMI.
- 4. The original figure of 'Pecten' lundgreni MOBERG.

In each of the above cases metric proportions plot within the ranges of text figs. 89-96. TROEDSSON (1951) referred MOBERG's species to *Entolium*. Since he may have had access to the type material it is possible that the appearance of divaricate striae on the original figure may be a misrepresentation of the divaricate fibres which are present in the outer shell layer of *Entolium* as well as the species described in Section 3. In the case of *C*. (*C*.) *fromageti* (a species described from Vietnam) it is possible that the lack of '*Camptonectes*-ornament' in the median part of the shell is not due to an original absence but to wear of what was previously a more completely ornamented shell.

Text fig. 93: *Camptonectes (C.) subulatus* – depth of byssal notch/length.

Type specimens and figures of type specimens corresponding to preservation state b) are: -

- 5. A syntype of 'P.' calvus GOLDFUSS (GPIB 609; Pl. 4, Fig. 4).
- 6. The two known syntypes of 'P.' dehmensis ERNST (GP1G).

Text fig. 94: Camptonectes (C.) subulatus - height of anterior auricle/length.

- 7. The original figure of 'P.' sublaevigatus ERNST.
- 8. The original figure of 'P.' rinki LUNDGREN.
- 9. The original figure of 'P.' (Amusium) Bellampensis GEMMELLARO and DI BLASI.
- 10. The original figure of 'P.' tingensis TILMANN.

Numbers 5-9 plot within the ranges of text figs. 89-96. Most of the 16 syntypes of 'P.' tingensis (GPIB; from Peru) are unlike TILMANN's figure in that they display radial and, in some cases, comarginal ornament. It is therefore very doubtful whether 'P'. tingensis can be referred to the species described in Section 3. GOLDFUSS' specific name calvus has been applied to figured specimens which by the configuration of the auricles are clearly referable to Entolium (E.) lunare (STAESCHE, 1926; TROEDSSON, 1951). With the evident possibility of confusion unfigured references to GOLDFUSS' species in D'ORBIGNY (1850), TATE and BLAKE (1876), JOLY (1907) and WOBBER (1968) cannot safely be synonymised with the species under discussion. FUCINI's (1906) figure of GEMMELLARO and DI BLASI's species may also refer to E. (E.) lunare and AND-LER'S (1858) unillustrated species 'P.' amatus, described only as a smooth flat shell with comarginal striae, has a similarly equivocal status.

Text fig. 95: Camptonectes (C.) subulatus – posterior hinge length/length.

Text fig. 96: Camptonectes (C.) subulatus - anterior hinge length/length.

Type specimens and figures and descriptions of type specimens corresponding to preservation state c) are: -

- 11. The holotype (M) of 'P.' punctatissimus QUENSTEDT (GPIT).
- 12. The original figure of 'P.' Lobbergensis EMERSON.
- 13. The original description of 'P.' substriatus ROEMER.
- 14. The single observed type of 'P.' punctatus SIMPSON (WM 604).

Metric proportions of 11 and 12 plot within the ranges of text figs. 89–96. Both QUENSTEDT's and ROEMER's specific names have been applied (by respectively TERQUEM and PIET-TE, 1865 and STAESCHE, 1926) to quite strongly striate specimens which may be referable to *Chlamys (Ch.) textoria*. Therefore, bearing in mind the remarks made on p. 110 it seems wise to regard inadequately characterised references to these species in TATE and BLAKE (1876), COX (1928), ROSENKRANTZ (1934, 1942), and DECHASEAUX (1936) as of uncertain taxonomic position.

Type specimens and figures and descriptions of type specimens corresponding to preservation state d) are: -

- 15. The sole observed syntype of '*P*.' *disparilis* QUENSTEDT (GPIT 4–4–8; Pl. 4, Fig. 6).
- 16. A syntype of 'P.' strionatis QUENSTEDT (GPIT).
- 17. The holotype (M) of 'P.' Castor D'ORBIGNY (MNS).
- 18. The original figure of 'P.' subulatus MUNSTER.
- 19. The original figure of 'P.' jamoignensis TERQUEM and PIETTE.
- 20. The original figure of 'P.' Tullbergi LUNDGREN.
- 21. The original figure of 'P.' Etheridgii TAWNEY.
- 22. The original figure of 'P.' textilis MUNSTER.
- 23. The original description of 'P.' Trigeri OPPEL.

Numbers 15–20 have metric proportions which plot within the ranges of text figs. 89–96. However, 'P.' disparilis displays particularly prominent radial striae and bearing in mind its horizon of derivation (Planorbis zone) might be an example of *Chlamys (Ch.) valoniensis*. The same may also be the case for 'P.' *Etheridgii* (syntypes: IGS 7829, 91801; Pl. 4, Fig. 9) which may also have an anomalously low L/PH (21). N/L of 'P.' textilis (22) is similarly low and ROEMER (1839), who may have examined the syntypes, has applied the name to forms which are reminiscent of Ch.(Ch.) textoria. Bearing in mind the remarks made on p. 110 MONSTER's species can only tentatively be placed in synonymy. The same approach must also be adopted for 'P.' Trigeri (23) which has been applied by STAESCHE (1926) to specimens whose description recalls that of the 'fine' phenotype of Ch. (Ch.) textoria.

In the uncertainty over the affinities of 'P.' textilis the earliest available name for the species described in Section 3 is 'P.' subulatus MONSTER. The type material appears to be lost thus a neotype may need to be designated. Bearing in mind the remarks made on p. 110 with respect to radially striate specimens, inadequately characterised references to MUNSTER's species in D'ORBIGNY (1850), BRAUNS (1871), MOBERG (1888), BEHMEL and GEYER (1966), BERRIDGE and IVIMEY-COOK (1967), WOBBER (1968) and HALLAM (1971) and to QUENSTED'S 'P.' strionatis in JAWORSKI (1916), must be treated with some scepticism. MELVILLE's (1956) 'Ch.' subulata securis is discussed under Ch. (Ch.) textoria.

5. STRATIGRAPHIC RANGE

The earliest record of C. (C.) subulatus is a single specimen from the pre-Planorbis beds of Gloucestershire (BM L77305). Thereafter the species becomes common in the Planorbis zone (Hettangian) of S. Germany (STAESCHF, 1926) and in suitable sediments (see Section 8) is thus found in all stages until the U. Pliensbachian. There are no unequivocal records from the L. Toarcian but seven specimens are known from the U. Toarcian of Germany (ERNST, 1923; STAESCHE, 1926; GPIG). D'ORBIGNY'S (1850) records from the Toarcian of Germany are of doubtful status (see p. 71) but ROST NERANTZ (1934) records examples of *C. (C.) subulatus* from the Toarcian of Greenland.

STATSON (1926: 75) records a specimen from the Aalenian whose H/UA (24) and ornamentation is indistinguishable from that of C. (C.) subulatus. However, other weakly ornamented Aalenian examples of C. (*Camptonectes*) such as BM L41942 have a higher H/UA (25) and are probably abraded specimens of C. (C.) auritus. Thus STAESCHE's record must be considered questionable in the absence of a figure or a specimen in his collection (GPIT) conforming to the description.

6. GEOGRAPHIC RANGE

Although occurring over a large area of Europe (text fig. 97) *C.* (*C.*) subulatus is much more common in the northern parts of the region, implying a possible temperature dependance. STAESCHF (1926) commented on the absence of the species from the Planorbis zone of the Rhone basin, thereby implying a northerly derivation. Except for records from Greenland (see Section 5) there are no certain occurrences of *C.* (*C.*) subulatus outside Europe (cf. Section 4).

Text fig. 97: Camptonectes (C.) subulatus - European distribution.

7. DESCRIPTION OF ECOLOGY

In the Hettangian C. (C.) subulatus occurs in sandstones in E. France (TERQUEM and PIETTE, 1865; fauna p. 87). Calcarenites are the site of probable occurrences of the species in the Planorbis zone of S. Wales (WOBBER, 1968). In S. Germany marly limestones of the same age contain common examples of C. (C.) subulatus (STAESCHE, 1926) reaching a maximum height of 32 mm (GPIT). The species is also common in oolitic limestones of the Angulata zone and L. Sinemurian in the same area. In the latter substage it attains a maximum height of 30.5 mm (GPIT) and is associated with *Entolum (E.) lunare.*

In the U. Sinemurian C. (C.) subulatus occurs in the Obtusum zone chamosite oolites of the Frodingham Ironstone (fauna p. 69) but it is greatly outnumbered by E. (E.) lunare. In the Raricostatum zone of Yorkshire C. (C.) subulatus occurs commonly in silty shales in association with Pseudopecten (Ps.) equivalvis, Pseudolimea, Antiquilima, Pinna, Gryphaea, Pleuromya, Procerithium, Tetrarbynchia and belemnites (SELLWOOD, 1972). E. (E.) lunare is quite rare. Numbers of C. (C.) subulatus are particularly high in the vicinity of large Pinna. A similar association characterises the Jamesoni zone (L. Pliensbachian) of Yorkshire and the U. Sinemurian/L. Pliensbachian sequence in S. Germany where C. (C.) subulatus reaches a maximum height of 37.5 mm (GPIT). In sediments of the same age but with a somewhat restricted benthos (mainly consisting of protobranchs, *Inoceramus* and Oxytoma [SELLWOOD, 1972]) in Dorset, C. (C.) subulatus is rare.

C. (C.) subulatus occurs commonly in shales of the Margaritatus zone (U. Pliensbachian) in Yorkshire where E. (E.) lunare is rare. However the latter species is common and C. (C.) subulatus is rare in U. Pliensbachian sandstones and ironstones. The maximum height attained by C. (C.) subulatus in the substage is 42 mm (GPIT).

Sparse records from the U. Toarcian of Germany (see Section 5) are from grey marlstones containing a somewhat restricted benthic fauna in which *C. (C.) subulatus* attains a maximum height of 52.5 mm (STAESCHE, 1926).

The species is unknown in the low salinity marginal marine deposits of the Hettangian in N. W. Germany (HUCKRIEDE, 1967) and W. Portugal (BOHM, 1901) and does not appear until the Raricostatum zone (U. Sinemurian) in the transgressive sequence of the Lossiemouth borehole (BERRIDGE and IVIMFY-COOK, 1967). However, LUNDGREN (1881) records the species from paralic cyclic sediments in the Hettangian of Scania although it is not clear whether the species occurs in anything but the most fully marine beds. *C. (C.) subulatus* is not recorded commonly in the area until the L. Sinemurian when conditions were continuously marine (TROEDSSON, 1951).

C. (C.) subulatus is not known to occur commonly other than in the examples discussed above. However, isolated specimens are widely recorded (text fig. 97).

8. INTERPRETATION OF ECOLOGY

Apart from an apparent abhorrence of the soupy substrates and low oxygen tension associated with bituminous shale deposition (indicated by the absence of the species from the L. Toarcian of Europe) C. (C.) subulatus seems to have been a eurytopic species with respect to substrate. However, abundance data indicates a definite preference for argillaceous substrates at least after the L. Sinemurian. Since this is essentially the reverse of the pattern exhibited by Entolium (E.) lunare it is possible that such niche differentiation was caused by competition, perhaps for juvenile attachment sites, between earlier, more eurotypic representatives of the species.

There is little evidence to suggest that *C*. (*C*.) subulatus could tolerate the high stress environments associated with low or fluctuating salinity. The scarcity of the species in sediments where the faunal diversity is only somewhat reduced suggests that *C*. (*C*.) subulatus could only thrive in the most stable environments. However, in these cases the absence of *Pinna*, which by its frequent association with *C*. (*C*.) subulatus may have served as a byssal attachment site (see Section 9), could be the cause of the scarcity of the species rather than any intolerance of slightly increased stress.

A Recent morphological analogue of *C. (C.) subulatus*, *Pecten' alcocki* SMITH, lives byssally attached to siliceous sponges in the bathyal zone (KNUDSEN, 1972).

9. FUNCTIONAL MORPHOLOGY

The thin shell, low convexity and minimal ornamentation of all examples of C. (C.) subulatus and the marked byssal notch and small adult size of most, are paradigmatic for a byssally suspended mode of life (tightly fixed).

It is not clear at what size, if any, the Recent analogue 'P.' alcocki loses the ability to attach by a byssus. However, late populations of C. (C.) subulatus, reaching a maximum height of over 50 mm, must be near the upper limit for this mode of life and may have been forced to recline in the later stages of ontogeny.

Ontogenetic increase in umbonal angle probably facilitated escape from predators by swimming at even the largest sizes. In spite of the juxtaposition of radial and divaricate elements in the shell, strength and stiffness must have been very low, thus it is extremely doubtful whether *C. (C.) subulatus* could have resisted attempted predation by means of a 'siege' policy.

10. ORIGINS AND EVOLUTION

STAESCHE (1926) considered that forms referable to *C. (C.)* subulatus were derived from *Chlamys trigeri* (a possible synonym, see Section 4) in the Planorbis zone. He believed the latter species to be synonymous with '*Pecten*' simplex WINKLER (1861), a species from the Kössen Beds (U. Trias) of Bavaria. However, '*P.*' simplex has strong radial ornament and is unlikely to have close affinities with *C. (C.)* subulatus. A more likely ancestor for the latter is '*Pleuronectites' laevigatus* SCHLOTHEIM, a smooth species, common in the M. Trias.

There appear to be no morphological trends in *C. (C.) subulatus* apart from a general increase in maximum height from 32 mm (Hettangian) to 30.5 mm (L. Sinemurian) to 37.5 mm (L. Pliensbachian) to 42 mm (U. Pliensbachian) to 52.5 mm (U. Toarcian). This, together with a narrowing of the range of favourable substrates, probably indicates the prevalence of 'K' selection (GOULD, 1977).

The post U. Toarcian extinction of *C. (C.) subulatus* may have been caused by the widespread development of shallow water facies over N. Europe, producing unfavourable conditions for late representatives of the species.

Camptonectes (Camptonectes) auritus (SCHLOTHEIM 1813) Pl. 3, Figs. 25–40; text figs. 98–107

Synonymy

- 1676 Pectinites; PLOT, p. 104, pl. 4, fig. 11.
 1678 Pectinites; LISTER, pl. 9, fig. 51.
 1813 Chamites auritus sp. nov; SCHLOTHEIM, p. 103.
 v* 1818 Pecten lens sp. nov; J. SOWERBY, p. 3, pl. 205, figs. 2, 3.
- v⁺⁺ 1818 Pecten arcuata sp. nov; J. SOWERBY, p. 4, pl. 205, figs. 5, 7.
 - 1822 Pecten Maltonensis sp. nov; YOUNG and BIRD, p. 235, pl. 9, fig. 1.

Text fig. 98: Camptonectes (C.) auritus - height/length.

v* 1833	Pecte	n com	<i>atus</i> sp	. nov;	Münster	in GOLDFI	JSS 1
	p. 50, pl. 91, figs. 5a, 5b.						

- 1939 *Pecten Buchi* sp. nov; ROEMER, p. 27, pl. 13, figs. 8a, 8b.
- 1939 Pecten lens J. SOWERBY; ROEMER, p. 27.
- 1839 *Pecten Dechem* sp. nov; ROEMER, p. 28, pl. 18, fig. 25.
- 1839 Pecten arcuatus J. SOWERBY; BEAN, p. 60.
- 1839 Pecten lens J. SOWERBY; BEAN, p. 60.
- ? 1843 Pecten lens J. SOWERBY; QUENSTEDT, p. 337.
- 1850 Pecten Lusitanicus sp. nov; SHARPE, p. 189, pl. 24, fig. 3.
- 1850 Pecten Saturnus sp. nov; D'ORBIGNY, v. 1, p. 284 (BOULE, 1910, v. 5, p. 69).
- v 1850 Pecten Midas sp. nov; D'ORBIGNY, v. 2, p. 54 (BOULE, 1932, v. 21, p. 12, pl. 2, figs. 3-6).
- non 1853 Pecten lens J. SOWERBY; MORRIS and LYCFTT, p. 11, pl. 2, fig. 1.

- non 1853 Pecten archatus J. SOWERBY; MORRIS and LYCETT, p. 11, pl. 1, fig. 18.
 - 1853 Pecten Saturnus D'ORBIGNY; CHAPUIS and DE-WALQUE, p. 215, pl. 29, fig. 4.
 - v 1858 Pecten lens J. SOWFRBY; QUENSTEDT, p. 322, pl. 44, fig. 12, p. 354, pl. 46, fig. 20, pl. 48, fig. 8, p. 432, pl. 59, fig. 4 (non pl. 59, fig. 3).
 - 1860 Pecten lens J. SOWERBY; COQUAND, p. 70.
 - ? 1862 Pecten Delessei sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 266, pl. 37, fig. 6.
 - 1862 Pecten Parandieri sp. nov; ÉTALLON in THUR-MANN and ÉTALLON, p. 266, pl. 37, fig. 6.
- non 1863 Pecten Midas D'ORBIGNY, DOLLFUS, p. 79, pl. 14, figs. 1–3.
 - 1864 Pecten lens J. SOWERBY; v. SFEBACH, p. 99.
 - 1864 Pecten comatus MUNSTER; V. SEEBACH, p. 99.
 - 1866 Pecten morini sp. nov; DE LORIOL in DE LORIOL and PELLAT, p. 107, pl. 10, fig. 6.

- ? 1866 Pecten validus sp. nov; LINDSTROM, p. 15, pl. 3, figs. 5, 6.
- 1867 Pecten lens J. SOWERBY; LAUBE, p. 12.
- v[‡] 1867 Pecten aratus sp. nov; WAAGEN, p. 630, pl. 31, fig. 3.
- ? 1869 Pecten lens J. SOWERBY; TERQUEM and JOURDY, p. 128.
- 1871 Pecten Nitescens sp. nov; PHILLIPS, p. 330, pl. 15, fig. 2.
- ? 1872 Pecten Midas D'ORBIGNY; DF LORIOL et al., p. 389, pl. 22, figs. 12, 13.
- ? 1874 Pecten subvitreus sp. nov; GEMMELLARO and D1 BLASI, p. 122, pl. 3, figs. 11, 12.
- Pecten midas D'ORBIGNY; DE LORIOL and PELLAT, ? 1875 p. 193.
- 1875 Pecten Etalloni sp. nov; DE LORIOL in DE LORIOL and PELLAT, p. 197, pl. 22, figs. 8, 9.
- 1879 Pecten lens J. SOWERBY; BRANCO, p. 110.
- non 1880 Pecten midas D'ORBIGNY; DAMON, pl. 17, fig. 4.
- v# 1880 Pecten Clypeatus sp. nov; WITCHELL, p. 131, pl. 5, figs. 1a, 1b.
- 1882 Pecten gracilis sp. nov; ALTH, p. 294, pl. 21, figs. 15, 16.
- ? 1883 Pecten lens J. SOWERBY; LAHUSEN, p. 23, pl. 2, figs. 1, 2.
- v* 1883 Pecten triformis sp. nov; WHIDBORNE, p. 502, pl. 16, fig. 3.
 - 1886b Pecten Neumayri sp. nov; DE GREGORIO, p. 15, pl. 2, figs. 5, 6.
 - 1886c Pecten anughus sp. nov; DE GREGORIO, p. 10, pl.4, figs. 12a-c.
- ? 1888 Pecten lens J. SOWERBY; SCHLIPPE, p. 128.
- 1890 Pecten lens J. SOWERBY; TAUSCH, p. 13, pl. 7, fig. 9.
- 1893 Pecten Nais sp. nov; DE LORIOL, p. 310, pl. 33, figs. 3, 4.
- 1893 Pecten Letteroni sp. nov; DE LORIOL in DF LORIOL and LAMBERT, p. 140, pl. 10, fig. 8.
- non 1894 Pecten Buchi ROEMER; DE LORIOL, p. 53, pl. 6, fig. 7.
 - ? 1896 Pecten cf. lens J. SOWERBY; SEMENOW, p. 64.
 - ? 1898 Pecten lens J. SOWERBY; GREPPIN, p. 129.
 - ? 1900 Chlamys lens (J. SOWERBY); COSSMANN, p. 170.
 - ? 1905 Pecten (Camptonectes) arcuatus J. SOWERBY; KILIAN and GUÉBHARD, p. 758.
 - ? 1905 Pecten (Camptonectes) lens J. SOWERBY; KILIAN and GUEBHARD, p. 758.
 - ? 1907 Pecten lens J. SOWERBY; DENINGER, p. 454.
 - 1910 Camptonectes lens (J. SOWERBY); LISSAJOUS, p. 363, pl. 10, fig. 6. 1915
 - Pecten lens J. SOWERBY; KRENKEL, p. 296.
- v* 1916 Camptonectes aalensis sp. nov; PARIS and RICHARDSON, p. 523, pl. 14, figs. 3a, 3b.
- 1917 Pecten lens J. SOWERBY; BORISSIAK and IVANOFF, p. 19, pl. 1, figs. 3, 6, 7, 9, 11.
- p 1923 Camptonectes lens (J. SOWERBY); LISSAJOUS, p. 165.
- ? 1924 Camptonectes cf. bellistriatus (MEEK); MCLEARN, p. 47, pl. 5, figs. 4, 5.
- ? 1924 Camptonectes sp; MCLEARN, p. 47, pl. 5, fig. 6.
- 1925 Pecten lens J. SOWERBY; READ et al., p. 80. 1925 Pecten (Camptonectes) lens J. SOWERBY; DUBAR,
- p. 285. ? 1926 Camptonectes lens (J. SOWERBY); ROMAN, p. 175.
- v* 1926 Camptonectes psilonoti sp. nov; STAESCHE, p. 74, pl. 3, fig. 2.
- pv 1926 Camptonectes lens (J. SOWERBY); STAESCHE, p. 76, pl. 2, fig. 8.
- v non 1926 Camptonectes lens var. annulatus (J. DE C. SOW-ERBY); STAESCHE, p. 79, pl. 3, fig. 12.
 - v* 1926 Camptonectes giganteus sp. nov; ARKELL, p. 544, pl. 33, fig. 1.

- v 1930a Camptonectes lens (J. SOWERBY); ARKELL, p. 94, pl. 7, fig. 1, (1931a) pl. 9, figs. 4-7.
- Camptonectes sandsfootensis sp. nov; ARKELL, v* 1930a p. 101, pl. 8, fig. 3.
- pv non 1931a Chlamys (Aequipecten) midas (D'ORBIGNY); ARKELL, p. 115, pl. 11, figs. 17-21.
 - ? 1931 Pecten (Camptonectes) cf. lens J. SOWERBY; SOKO-LOV and BODYLEVSKY, p. 55, pl. 4, fig. 7.
 - 1931 Pecten (Aequipecten) validus LINDSTROM; SOKO-LOV and BODYLEVSKY, pp. 58, 59, pl. 3, figs. 1, 2.
 - p 1934 Pecten (Camptonectes) lens J. SOWERBY; STOLL, p. 22.
 - non 1934 Pecten (Camptonectes) lens var. annulatus J. DE C. SOWERBY; STOLL, p. 22.
 - 1935 Pecten (Camptonectes) aff. lens J. SOWERBY; SPATH, p. 56.
 - v 1936 Camptonectes lens (J. SOWERBY); DECHASEAUX, p. 30, pl. 4, figs. 11, 14 (non figs. 9, 9a).
 - non 1936 Camptonectes lens var. exaratus (TERQUEM and JOURDY); DECHASEAUX, p. 30.
 - 1936 Camptonectes Mairei sp. nov; DECHASEAUX, p. 37, pl. 5, figs. 8-10.
 - ? 1936 Camptonectes aalensis PARIS and RICHARDSON; WANDEL, p. 480.
 - 1936 Camptonectes morini (DE LORIOL); SPATH, p. 105, pl. 41, figs. 5, 6.
 - 1936 Camptonectes suprajurensis (BUVIGNIER); SPATH, p. 106, pl. 41, figs. 2-4, pl. 42, fig. 9, pl. 43, fig. 4 (?BUVIGNIER sp.).
 - 1939 Camptonectes lens (J. SOWERBY); STEFANINI, p. 173, pl. 99, fig. 12.
 - non 1941 Pecten (Camptonectes) lens J. SOWERBY; LEANZA, p. 173, pl. 10, figs. 1, 2.
 - ? 1951 Chlamys interpunctata sp. nov; TROEDSSON, p. 214, pl. 20, fig. 18.
 - 1952 Camptonectes auritus (SCHLOTHEIM); COX, p. 23, pl. 2, fig. 6.
 - 1952 Camptonectes lens (J. SOWERBY); MAKOWSKI, p. 17.
 - ? 1953 Camptonectes grandis (HECTOR); MARWICK, p. 100, pl. 4, figs. 6, 7.
 - 1953 Camptonectes giganteus ARKELL; DONOVAN, p. 70, pl. 15, fig. 1.
 - ? 1957 Camptonectes bellistriatus (MEEK); FREBOLD, p. 21
 - 1961 Camptonectes cf. auritus (SCHLOTHEIM); HAY-AMI, p. 319.
 - v 1963 Camptonectes sp; KIRKALDY, p. 129.
 - ? 1964 Camptonectes stygius (WHITE); IMLAY, p. 25, pl. 2, figs. 1–10.
 - 1965 Camptonectes auritus (SCHLOTHEIM); COX, p. 54.
 - ? 1966 Camptonectes lens (J. SOWERBY); BEHMEL and GEYER, p. 28.
 - ? 1974 Camptonectes bellistriatus (MEEK); R. WRIGHT, pp. 428, 430.
 - 1974 Camptonectes greenhoughi sp. nov; SKWARKO, p. 80, pl. 26, figs. 11, 13-17.
 - 1975 Camptonectes sandsfootensis ARKELL; SYKES, p. 217.
 - 1975 Camptonectes giganteus ARKELL; SYKES, p. 218.
 - 1977 Camptonectes (Camptonectes) morini (DE LORIOL); KELLY, p. 77, pl. 5, figs. 1-5, 7-9.
 - v 1978 Camptonectes (Camptonectes) auritus (SCHLOT-HEIM); DUFF, p. 66, pl. 5, figs. 22, 25, text. fig. 22.

Neotype of Chamites auritus SCHLOTHEIM 1813, p. 103 designated by DUFF, 1978, p. 66; BM L80525; figured DUFF, 1978, pl. 5, fig. 25; Pl. 3, Fig. 25 herein; Shell-cum-Pebble Bed (Oxfordian), Headington, Oxford.

Text fig. 99: Camptonectes (C.) auritus - height/umbonal angle.

I. ORIGINAL DIAGNOSIS AND DESCRIPTION

None given; reference to LISTER (1678, pl. 9, fig. 15).

2. DIAGNOSIS

Distinguished from C. (C.) lammatus by the generally finer ornament, from C. (C.) subulatus by the presence of ornament on all parts of the disc and from C. (C.) virdunensis by the more orbicular disc.

3. DESCRIPTION

Disc sub-ovate, higher than long early in ontogeny, growing allometrically to become sub-orbicular and finally subovate, longer than high (text fig. 98), near the maximum height of 150 mm (OUM J2361). Umbonal angle very variable (text fig. 99), increasing at a decreasing rate during ontogeny. Dorsal margins concave, disc flanks low.

Inequilateral, anterior greater than posterior half length; mequivalve, low convexity, left valve more convex than right. Intersinal distance variable, greater in left valve than right, apparently increasing with respect to length at a slower rate in U. Jurassic cf. M. Jurassic representatives (text figs. 100, 101). Byssal notch depth variable, moderate to large (text fig. 102), increasing isometrically.

Auricles well demarcated from disc, variable in size, anterior larger than posterior. Anterior auricle of right valve meeting hinge line and disc at about 90°. Other auricles meeting hinge line at an obtuse angle and disc at an acute angle. All auricles ornamented with fine comarginal striae. Posterior auricle of right valve also bearing divaricate striae.

Height of anterior auricle and length of anterior hinge variable, increasing with respect to length at a decreasing rate in all populations (text figs. 103, 104). Length of posterior hinge variable, increasing with respect to length at a slower rate in U. cf. M. Jurassic representatives (text fig. 105).

Disc exterior ornamented with a variable number of fine divaricate striae (e. g. Pl. 3, Figs. 32, 33) increasing in number by intercalation and rendered 'punctate' by the intersection of growth lines.

Shell thickness low to moderate.

Text fig. 100: Camptonectes (C.) auritus - intersinal distance on left valve/length.

4. DISCUSSION

The systematics of the essentially finely-ornamented and orbicular species of *C. (Camptonectes)* described above has been the subject of much, often heated, debate. Failure to appreciate the range of static, ontogenetic and ecophenotypic variation in both ornamentation and metric proportions, allied to the typological approach of early authors has led to the designation of a plethora of specific names. The indiscriminate lumping of many of these names by early revisionists who failed to examine type material has led to a secondary source of confusion (see ARKELL, 1930a for a review). However, later revisionists have also been lamentably at fault in their failure to unite stratigraphically separated but morphologically indistinguishable forms. The result is almost unparalleled nomenclatural chaos.

Minor differences in metric proportions of early and later populations (see Section 3) of individuals whose ornament is within the range defined by Pl. 3, Figs. 32, 33, can be explained as the result of phyletic neoteny (see section 10), since there is no evidence for the existence of separate lineages. Similarly the availability of an explanation in terms of stunting (see Sections 8, 10) does not favour the recognition of certain localised populations, typified by a low H/UA ratio, as separate species. 'Ecophenotypic' rather than 'genetic' variation can also be held to account for the existence of specimens with relatively strong comarginal ornament (Pl. 3, Fig. 31) and specimens with the median sector of the shell unornamented (Pl. 3, Fig. 38). The former is probably the result of some environmental disturbance (as might be caused by tides, storms or attempted predation) interrupting the normal pattern of growth (CLARK, 1974) while the latter is almost certainly the result of abrasion since it is confined to those parts of the shell which have been exposed to the environment for the longest period. Moreover in paired valves it is invariably the right valve (which was almost certainly in contact with the substrate and therefore subject to the most abrasion) which exhibits reduced ornamentation.

The framework of variation erected above is the basis for the following taxonomic discussion.

Text fig. 101: Camptonectes (C.) auritus - intersinal distance on right valve/length.

Type specimens which are inseparable from the species described in Section 3 by metric criteria are: -

- 1. The syntypes of '*Pecten' lens* J. SOWFRBY (BM L80525, 43326; Pl. 3 Fig. 25).
- 2. A syntype of '*P.' arcuata* J. SOWERBY (BM L80528; Pl. 3, Fig. 30).
- 3. The sole observed type of 'P.' comatus MUNSTER (BSPHG AS VII 634; Pl. 3, Fig. 27).
- 4. The sole observed syntype of 'P.' aratus WAAGEN (BSPHG AS XXII 32; Pl. 3, Fig. 34).
- 5. The sole observed type of 'P.' Letteroni DE LORIOL (MNS B03988; Pl. 3, Fig. 28).
- 6. The sole observed syntype of *Camptonectes aalensis* PARIS and RICHARDSON (BM L41942; Pl. 3, Fig. 40).
- 7. The holotype (M) of C. Psilonoti STAESCHE (GPIT).
- 8. A syntype of C. giganteus ARKELL (OUM J2359).

Figures of type and original specimens indistinguishable by metric criteria from the species described in Section 3 are those of: -

9. Pectinites PLOT.

- 10. 'P.' Decheni ROEMER.
- 11. 'P.' Lusitanicus SHARPE.
- 12. 'P.' Midas D'ORBIGNY (BOULF, 1932).
- 13. 'P.' Parandieri ÉTALLON.
- 14. 'P.' morini DF LORIOL.
- 15. 'P.' Etalloni DE LORIOL.
- 16. 'P.' gracilis ALTH.
- 17. 'P.' Nais de Loriol.
- 18. C. sandsfootensis Arkell (paratypes: OUM J2360, J2361).
- 19. C. Mairei DECHASEAUN.
- 20. C. suprajurensis (BUVIGNIER); SPATH (see p. 131 for a discussion of BUVIGNIER's species).

Of the above species, numbers 4, 6, 7, 8, 9, 13, 16 and 18 refer to specimens which are unornamented in the median sector of the shell while 19 refers to a specimen with strong comarginal ornament, both of which characteristics are considered to be features of 'ecophenotypic' variation (see above).

Text fig. 103: Camptonectes (C.) auritus - height of anterior auricle/length.

Text fig. 104: Camptonectes (C.) auritus - anterior hinge length/length.

The remaining measured species exhibit the typical ornament of the species described in Section 3. ARKEII (1926) considered that large size (H: \simeq 125) was sufficient ground for erecting *C. giganteus* (8) but the presence of intermediate sized specimens (text fig. 98) belies this reasoning. The abnormally high H/UA ratio considered by ARKELL (1930a) to be distinctive of *C. sandsfootensis* is merely the result of incorrect measurement. The original figure yields a value (H: 123, UA: \simeq 145) well within the range of text fig. 99 projected to larger sizes.

The original figure of 'P.' Delessei ÉTALLON (21) is inseparable from the species described in Section 3 by L/AH, L/PH, L/I_L and L/HAA but the anomalously high H/L and H/UA suggest that it may be equivalent to C. (C.) suprajurensis. 'P.' subvitreus GEMMELLARO and DI BLASI (22) has an anomalously low H/UA but this could well be due to imprecise measurement by the authors of the species. H/L and L/AH of the original figure is inseparable from the species described in Section 3. The figure of 'P.' Buchi ROEMER apprently depicts a left valve which has been reversed through the process of printing from a copper engraving. Further inaccuracies in reproduction may account for the seemingly high H/UA and L/AH (23) of a specimen whose ornament and other metric proportions are indistinguishable from the species described in Section 3.

Species for which types and figures are either unavailable or of insufficient quality for measurement are considered below.

C. cf. *bellistriatus* (MEFK); MCLEARN and C. sp; MCLEARN from N. America have ornament which is within the range defined by Pl. 3, Figs. 32, 33. However, a specimen referred to the former species (BM L58934) from the Oxfordian of Wyoming has an exceptionally low H/UA (24) thus it may be that finely ornamented N. American C. (*Camptonectes*) are specifically distinct. C. grandis (HECTOR); MARWICK from N. Zealand is indistinguishable on the basis of ornament but is reported to have only a small byssal notch. Although the size of the latter is variable in the species described in Section 3 it seems unwise at present to synonymise the species.

'P.' triformis WHIDBORNE (holotype BM L73166; Pl. 3, Fig. 35), 'P.' nitescens PHILLIPS and C. stygius (WHITE); IM-LAY are characterised by a lack of ornament in the median shell sector, which may be considered an aspect of 'ecophenotypic' variation (see above). C. stygius is however derived from N. America and therefore cannot be certainly synonymised with the species described in Section 3 (see above).

BOULE (1910) considered the single type of 'P.' Saturnus D'ORBIGNY in the MNO to be specifically indeterminate and created a neotype from the specimen figured in CHAPUIS and DEWALQUE (1853). The general form and ornamentation of the latter is indistinguishable from the species described in Section 3 as are the original figures of 'P.' Maltonensis Young and BIRD, 'P.' Neumayri DE GREGORIO, 'P.' anughus DE GRE-GORIO and C. greenboughi SKWARKO, the syntypes of

Text fig. 105: Camptonectes (C.) auritus - posterior hinge length/length.

P. Clypeatus WITCHELL (BM L17536; Pl. 3, Fig. 37), and the originals of C. sp. KIRKALDY (OUM J17551–3).

'P.' validus LINDSTROM from the Kimmeridgian is apparently a worn example of the species described in Section 3. The general shape and large size (H: 125) allow only that it might be a representative of C. (Camptochlamys) obscurus. SOKOLOV and BODYLEVSKY (1931) have applied LINDSTROM'S specific name to forms which undoubtedly belong to the former species. Chlamys interpunctata TRUEDSSON is reported to possess 'Camptonectes-ornament' but since it is derived from the L. Lias it may be a well preserved representative of C. (C.) subulatus. BEHMEL and GEYER's (1966) unillustrated record of 'P.' lens from the Lias seems to refer to a genuine example of the species described in Section 3. Unillustrated Bathonian records of J. Sowerby's species (1) (QUENSTEDT, 1843; TERQUEM and JOURDY, 1869; SCHLIPPF, 1888; SEMENOW, 1896; Greppin, 1898; Cossmann, 1900; Kilian and GUÉBHARD, 1905; DENINGER, 1907; LISSAJOUS, 1923; ROMAN, 1926) must be treated with great caution because of the possibility of confusion for the much more common Bathonian species C. (C.) lammatus. Prior to ARKELL's (1930a) description and illustration of J. and J. DE C. SOWERBY'S types 'P.' lens was interpreted very broadly. Thus STAESCHE (1926) not only included forms referable to C. (C.) laminatus within his hypodigm for C. lens (not the figured specimen) but also regarded forms which the present author places in C. (Camptochlamys) obscurus as being separable from C. lens only at the varietal level (see p. 137 for a discussion of this and other 'varieties' of 'P.' lens). MORRIS and LYCETT (1853) also misinterpreted J. Sowerby's hypodigms in assigning coarsely ornamented Bathonian specimens (= C. (C.) laminatus) to 'P.' lens and 'P.' arcuatus (2) while QUENSTEDT (1858, pl. 59, fig. 3) included a specimen with radial striae (= C. (Cc.) obscurus) within his hypodigm for 'P.' lens.

Even following ARKELL's revision, J. SOWERBY's hypodigms have been misinterpreted. Thus LEANZA (1942) refers to 'P.' (C.) lens a specimen from the Lias of Argentina which

has radial rather than divaricate striae and an abnormally high H/UA (25). A Bathonian specimen (pl. 4, figs. 9, 9a) referred to *C. lens* by DECHASFAUX (1936) has the coarse ornament of *C. (C.) laminatus* although another (pl. 4, fig. 11) appears to be a genuine example of *C. lens*. Specimens from the Bathonian referred to '*P.*' (*Camptonectes*) lens by STOLL(1934) very probably belong in *C. (C.) laminatus*.

Other secondary references to synonymous species which are based on specimens which may be outside the range of the species described in Section 3 include 'P.' lens J. SOWERBY; LAHUSEN and 'P.' (C.) cf. lens J. SOWERBY; SOKOLOV and BODYLEVSKY (both based on specimens with strong comarginal ornament which may belong in C. (Cc.) obscurus), 'P.' (C.) arcuatus J. SOWERBY; KILIAN and GUEBHARD (based on unfigured Bathonian specimens probably referable to C. (C.) laminatus) and C. aalensis PARIS and RICHARDSON; WANDEL (based on a specimen (26) with abnormally high H/UA). The specimens referred to D'ORBIGNY'S species P. Midas (12) by DOLLEUS (1863), DAMON (1880) and ARKELL (1931a) are clearly representatives of late populations of Radulopecten fibrosus. With the evident possibility of confusion inadequately characterised references to D'ORBIGNY'S species in DE LORIOL et al. (1872) and DE LORIOL and PELLAT (1875) cannot confidently be synonymised with the species described in Section 3. The specimen figured as 'P.' Buchi ROEMER by DE LORIOL (1894) has an abnormally high H/UA (27) and is referable to C. (C.) virdunensis.

SCHLOTHEIM'S (1813) 'Chamites' auritus, which was founded on the figure of *Pectinites* in LISTER (1678), itself a copy of the figure (discussed above) in PLOT (1676), provides the earliest available specific name for the species described in Section 3. DUFF (1978: 66) has designated an appropriate neotype. In the interests of brevity secondary references to synonymous species are excluded from the synonymy except where they differ from the original hypodigm or are of relevance to Sections 5–10. Further citations may be traced either directly or through synonymy lists in v. ZIETEN (1833),

Text fig. 106: Camptonectes (C.) auritus - European distribution.

Text fig. 107: Camptonectes (C.) auritus – World distribution (Callovian reconstruction).

ROFMER (1836), V. BUCH (1839), BRONN (1852), QUENSTEDT (1852), OPPEL (1858), CONTELLAN (1859), WAAGEN (1867), DF LORIOL AND PELLAT (1875), WHIDBORNE (1883), FIEBELKORN (1893), PARONA (1895), COSSMANN (1914), PARIS AND RICHARD-SON (1916), LEWINSKI (1923), STAFSCHI (1926), ARKELL (1930a), DFCHASEAUX (1936) AND DLIE (1978).

5. STRATIGRAPHIC RANGE

The earliest record of *C. (C.) auritus* is a single specimen from the Planorbis zone (Hettangian) of S. Germany (STAFSCHE, 1926). Specimens from the L. Lias of Sweden (TROFDSSON, 1951) and the M. and U. Lias of Spain (BEHMEL and GEYER, 1966) may be conspecific and specimens from undifferentiated Lias in the Alps (TAUSCH, 1890) are almost certainly conspecific (see Section 4). A number of examples, reaching a maximum height of 33 mm, are preserved on a block from the Posidonienschiefer (L. Toarcian) of S. Germany (BSPHG) but only one specimen from Northants (BM L89415; Pl. 3, Fig. 36) is recorded in the U. Toarcian.

The species becomes locally very common in the Aalenian and Bajocian but is exceedingly rare in the Bathonian. The following Bathonian specimens in the BM are probably referable to *C. (C.) auritus*: L24155, L24156, L74364, L76505 and L97129. Probable Bathonian records from France (DE-CHASEAUX, 1936) and Greenland (DONOVAN, 1953) together with a number of dubious records are discussed in Section 4.

In suitable facies *C. (C.) auritus* is found in all stages to the Tithonian and KELLY (1977) records the species from the Ryazanian stage in the Cretaceous of E. England.

6. GEOGRAPHIC RANGE

C. (C.) auritus is much more common in the northern parts of the European region (text fig. 106) but this is probably a reflection of the northerly distribution of the appropriate facies (see Section 8) rather than an indication of a temperature dependance. Outside Europe (text fig. 107) the species has a palaeolatitudinal range of about 150° (maximum of 100° [Kimmeridgian] in any one stage). After the L. Jurassic C. (C.) auritus appears to have attained an almost worldwide distribution although there are doubts about records from N. America and the E. Indies (see Section 4) and no known occurrences in S. America. The fact that C. (C.) auritus is only known from one locality (E. Greenland; DONOVAN, 1953) in the Bathonian outside Europe makes it implausible to attribute the extreme rarity of the species at that time within Europe (see Section 5) to a migration elsewhere.

7. DESCRIPTION OF ECOLOGY

C. (C.) auritus occurs in a wide variety of facies in the Aalenian of Europe. It is particularly common in the Northampton Sand Ironstone (Opalinum zone), a chamosite oolite containing a diverse fauna (see p. 26). It is also common in oolitic and pisolitic limestones of the Murchisonae zone in the Cotswolds where it reaches a maximum height of 52 mm (OUM J1913).

In the Bajocian of Yorkshire the species occurs abundantly at certain impure limestone horizons in the Scarborough Formation. The fauna is restricted (dominated by *Gervillella* together with *Cucullaea*, *Astarte*, *Cloughtonia* and *Pseudomelania*) and *C. (C.) auritus* is characteristically small (maximum height 43 mm; YM 531a) and has a low H/UA ratio. In the Millepore Bed, a sideritic sandstone with a more diverse fauna (the above together with *Trigonia*, *Pholadomya*, bryozoa, crinoids and regular echinoids), *C.* (*C.) auritus* is less common but reaches a maximum height of 72.5 mm (YM 531a). Similarly large sizes are reached by the species in the fully marine Bajocian deposits of S. Germany.

The species is extremely rare in the Bathonian (see Section 5), when *C. (C.) laminatus* is common, and is also rare in the argillaceous facies widely developed in the Callovian. However, in more littoral shallow water facies such as the limestones and sandstones of Yorkshire (U. Cornbrash, Kellaways Rock, Hackness Rock), Scotland (Brora Roof Bed), Poland and the Baltic Region *C. (C.) auritus* is locally common and reaches a maximum height of 61 mm (MNO 3399).

In the Oxfordian the species is found in a variety of shallow water, level bottom environments but appears to show a preference for oolites (e. g. Malton Oolite, Yorkshire). Contrary to ARKELL's opinion (1930a) the species is seldom abundant as is demonstrated by the fact that it contributes to none of the trophic nuclei of the benthic faunal associations studied by FURSICH (1977). Oxfordian *C. (C.) auritus* is always found with a high diversity fauna and the maximum height attained is 150 mm (OUM J2361).

The species is not common in the L. Kimmeridge Clay (Kimmeridgian) but in the more marginal sandy facies developed in the upper part of the formation (M. Tithonian) in England (Hartwell Clay) and N. W. France (Assises de Croi) it is locally abundant. Maximum size (H: 34, BM L35267) is, however, small and the H/UA ratio is generally low. *Inoperna* is a particularly common faunal associate. In the U. Tithonian C. (C.) auritus accurs in algal limestones (Townson, 1971) in Portland and the Boulonnais where it reaches a maximum height of 26 mm (BM L52436). The species is rare in more open marine deposits where C. (Camptochlamys) obscurus is common.

A few specimens are recorded from the Purbeck beds near Oxford (Kirkaldy, 1963).

The above description concentrates on the common and unusual occurrences of *C*. (*C.) auritus*. Specimens may in fact be found at almost all horizons in the M. & U. Jurassic of Europe. Notable exceptions, additional to those discussed above and in Section 5, are the Oxfordian-Tithonian coral reef facies of central and southern Europe, where almost all specimens of *C. (Camptonectes)* are referable to *C. (C.) virdunensis* (see p. 131), and the deep water pelagic limestone facies of the M. and U. Jurassic in the peri-Mediterranean region where there is only one doubtful record (GEMMELLARO and Dt BLASI, 1874; see Section 4), and that from a probable submarine high.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that C. (C.) auritus was a remarkably eurytopic species. Although the soft or soupy substrates characteristic of clay or limemud deposition were not apparently suitable, almost all other substrates, including shifting oolite shoals, were colonised. The species was also able to tolerate environments of high physical stress. Thus it is found in Tithonian algal limestones which were probably deposited in very shallow sub-tidal or inter-tidal situations (SELLWOOD, 1978) where exposure and wave disturbance must have been frequent. HALLAM (1976) has also suggested that Camptonectes was able to tolerate salinities within the upper brachyhaline regime (24-30%) and the occurrence of C. (C.) auritus in the Purbeck formation, a sequence of marine, lagoonal and freshwater beds (ANDERSON and BAZLEY, 1971), supports this general thesis (but see p. 113). While the records of C. (C.) auritus are probably from the most fully marine horizons, the lack of any other pectinids suggests that salinity was liable to at least short-term fluctuations. Although ammonites do occur in the Scarborough Formation the reduced faunal diversity of the beds containing C. (C.) auritus is generally suggestive of low environmental stability, with perhaps a higher incidence of storms being of controlling importance rather than salinity variations. JORDAN (1971) has reinterpreted the Kimmeridgian/Tithonian sequence of L. Saxony in terms of increasing rather than decreasing salinity so the lack of C. (C.) auritus suggests that euryhalinity did not extend to a tolerance of hypersaline conditions. However, somewhat rare occurrences of the species in bituminous shales in the L. Toarcian (see Section 5) and M. Callovian (DUFF, 1978) suggest that C. (C.) auritus had some ability to withstand reduced oxygen tension and there is good evidence of an ability to tolerate various temperatures (see Section 6).

Although a eurytopic species, the size, shape and numbers of C. (C.) auritus seem to have been considerably influenced by the environment. Open marine situations characterised by a high diversity fauna supported small populations of large individuals with a high H/UA ratio. Marginal marine environments with a lower diversity fauna supported larger

populations of relatively small individiduals with a low H/UA ratio. At first sight the correlation of size and numbers with distance from shoreline suggests that the species could adopt a range of adaptive strategies within the 'K-r' spectrum to allow colonisation of both biologically accommodated and physically controlled biofacies. However, the pattern of shape variation is not in accordance with this interpretation. Since umbonal angle increases during ontogeny one may conclude that individuals with a low H/UA ratio (from marginal marine situations) have grown more slowly, in complete contradiction to the normal policy of 'r' strategists. This might be explained by a strong correlation between shape and developmental stage, in which case precocious maturation and short life span could be invoked for marginal marine populations. This hypothesis could be tested by an analysis of growth lines. In the present absence of data for the latter and with support for the hypothesis from the evolution of C. (C.) auritus (see Section 10), the author prefers to adopt the view that marginal marine populations are stunted as a result of high environmental stress. It is suggested that the anomalously large number of individuals may be the consequence of a reduced incidence of predation, as has been demonstrated in Recent shallowwater communities by JACKSON (1974).

A close Recent morphological analogue of *C. (C.) auritus* is *Cyclopecten vitrea* (GMFLIN), a bathyal species (KNUDSEN, 1970). The frequent association of *C. (C.) auritus* with endobyssate mytiloid and pterioid bivalves suggests that *Chlamys varia* (LINNAEUS), which is found attached to the Horse Mussel *Modiolus modiolus* (A. BRAND, pers. comm., 1976), may be a closer Recent ecological analogue than *Cy. vitrea*.

The paucity of C. (C.) auritus in open marine environments in the Tithonian may be explained by competition with C. (Camptochlamys) obscurus, which is common in such environments. The species are not known to coexist in numbers at earlier horizons. The rarity of C. (C.) auritus in reef facies in the U. Jurassic and in all facies in the Bathonian may also be explained by competition (with respectively C. (C.) vurdunensis and C. (C.) laminatus). However, the cause of the rarity of C. (C.) auritus in the L. Jurassic is more easily attributed to the widespread development of unfavourable argillaceous facies than to competition with the common species C. (C.) subulatus.

9. FUNCTIONAL MORPHOLOGY

The existence of a moderate to large byssal notch indicates that C. (C.) *auritus* was byssally attached, at least early in ontogeny. Adult individuals, especially of later populations, probably gained stability mainly by virtue of their relatively heavy shells.

The thin shell, low convexity, subdued ornamentation and ontogenetic increase in umbonal angle of C. (C.) auritus indicate that swimming was a possibility. Phyletic reduction in the rate of H/UA increase, facilitating escape from predators by swimming at larger body sizes, is probably causally related to a parallel increase in maximum height.

SEILACHER (1972) has suggested that the apparent difficulty of programming the growth of divaricate ornament must imply great functional significance where it is present. In this respect one might argue that '*Camptonectes*-ornament' provides reinforcement for a thin and therefore weak shell. However, SEILACHER also argues that variability should be low in functional structures thus the great variation in the ornament of *C. (C.) auritus* presents a paradox. This could be resolved by invoking individual adaptation and an analysis of the development of ornament along the lines adopted for *Radulopecten vagans* (see JOHNSON, 1981) might be used to explore this possibility.

10. ORIGINS AND EVOLUTION

Since C. (C.) auritus is found in the Planorbis zone its origins may lie outside the Jurassic. True 'Camptonectes-ornament' is however unknown in the Triassic, the striking ornament exhibited by *Filopecten filosus* (v. HAUFR) being the nearest approach to it (see ALLASINAZ, 1972, pl. 40, figs. 1–7, pl. 41, figs. 1–3).

Insufficient data is available to assess the extent of phyletic evolution within L. Jurassic C. (C.) auritus. However, in M. & U. Jurassic representatives evolution is apparent in several characters although the variability of the species does not make for accurate documentation.

Oxfordian populations exhibit a slower rate of increase in PH, t_L and t_R with respect to length than their Bajocian ancestors. In the latter at least PH/L and fL/L increase during ontogenv thus Oxfordian populations may have evolved by the retardation of shape development relative to size. In the absence of absolute age data it is impossible to say whether later representatives have actually developed more slowly or simply grown faster. In each of the preceding cases the paucity of data from intermediate stages precludes an evaluation of the tempo of evolution. However, data for maximum height is available from a number of levels and seems to indicate an oscillatory pattern in an overall increase from Aalenian to Oxfordian (Aalenian, 52 mm; Bajocian, 72.5 mm; Callovian, 61 mm; Oxfordian, 150 mm). In fact the low Callovian value may well be an artefact of the limited number of museum specimens available for measurement from the stage thus maximum height could exhibit a smooth increase. The marked reversal to the trend in the Tithonian (H_{max}: 34) could also be due to limited data but is more probably the result of stunting (through restriction of the species to high stress environments, see Section 8).

Phyletic increase in size and retardation of somatic development are indicative of 'K' selection (GOULD, 1977). This provides further evidence for the view that individuals of small size with low H/UA from marginal marine situations are the products of stunting rather than facultative progenesis (see Section 8). Progenesis appears to be correlated with 'r' selection yet even late, 'K' selected, populations of *C. (C.) auritus* may exhibit small size and a low H/UA.

Camptonectes (Camptonectes) laminatus (J. SOWERBY 1818) Pl. 4, Figs. 10, 12–16, ?Fig. 11; text figs. 108–117

Synonymy

- v* 1818 Pecten laminata sp. nov; J. SOWERBY, p. 4, pl. 205, fig. 4.
- v* 1818 Pecten similis sp. nov; J. SOWERBY, p. 5, pl. 205, fig. 6.

- 1818 Pecten rigida sp. nov; J. SOWERBY, p. 5, pl. 205, fig. 8.
- 1850 Pecten Langrunensis sp. nov; D'ORBIGNY, v. 1, p. 314 (BOULE, 1912, p. 93).
- 1853 Pecten Woodwardii sp. nov; MORRIS and LYCETT, p. 8, pl. 1, fig. 20.
- 1853 Pecten arcuatus J. SOWERBY; MORRIS and LYCETT, p. 11, pl. 1, fig. 18 (non J. SOWERBY sp.).
- 1853 Peten lens J. SOWERBY; MORRIS and LYCETT, p. 11, pl. 2, figs. 1, 1a (non J. SOWERBY sp.).
- 1863 *Pecten rigidus* J. SOWERBY; LYCETT, p. 31, pl. 40, fig. 16.
- v* 1869 Pecten anguliferus sp. nov; TERQUEM and JOURDY, p. 128, pl. 13, fig. 16.
 - 1871 Pecten divaricatus sp. nov; PHILLIPS, p. 240, pl. 11, fig. 29.
 - 1883 *Pecten puellaris* sp. nov; WHIDBORNE, p. 501, pl. 19, figs. 3, 3a.
 - 1905 Pecten (Camptonectes) rigidus J. SOWERBY; KIL-IAN and GUÉBHARD, p. 758.
 - 1905 Pecten (Camptonectes) rigidus J. SOWERBY; KIL-IAN and GUÉBHARD, p. 758.
- pv 1926 Camptonectes lens (J. SOWERBY); STAESCHE, p. 76, pl. 2, fig. 8 (non J. SOWERBY sp.).
 - 1932 Camptonectes rigidus (J. SOWERBY); SPATH, p. 113, pl. 5, fig. 4, pl. 10, fig. 5.
- ? 1933 Pecten (Chlamys) curvivarians sp. nov; DIETRICH, p. 63, pl. 81, figs. 122, 123.
- v 1936 Camptonectes lens (J. SOWERBY); DECHASEAUX, p. 30, pl. 4, figs. 9, 9a (non figs. 11, 14, non J. SOWERBY sp.).
- p 1948 Camptonectes laminatus (J. SOWERBY); COX and ARKELL, p. 13.
- 1948 Camptonectes rigidus (J. SOWERBY); COX and ARKELL, p. 13.
- ? 1950 Camptonectes laminatus (J. SOWERBY); CHAN-NON, p. 248.
- non 1952 Chlamys curvivarians (DIETRICH); COX, p. 8, pl. 2, figs. 5, 8.
 - 1953 Camptonectes cf. laminata (J. SOWERBY); MAR-WICK, p. 100, pl. 10, fig. 11.
 - 1959 Camptonectes inexpectatus sp. nov; HAYAMI, p. 70, pl. 7, figs. 4, 5.
 - ? 1961 Camptonectes rigidus (J. SOWERBY); ROSSI RON-CHETTI and FANTINI SESTINI, p. 122, pl. 13, figs. 1, 2.
 - 1961 *Camptonectes* sp; ROSSI RONCHETTI and FANTINI SESTINI, p. 123, pl. 13, fig. 4.
 - 1964 Camptonectes laminatus (J. SOWERBY); J-C. FISCHER, p. 18.
 - 1964 *Camptonectes rigidus* (J. SOWERBY); J.-C. FISCHER, p. 19.
 - 1964 Camptonectes plattessiformis (WHITE); IMLAY, p. 26, pl. 2, figs. 11–14.
 - 1967 Camptonectes platessiformis (WHITE); 1MLAY, p. 79, pl. 2, figs. 1, 2.
 - p 1978 Camptonectes laminatus (J. SOWERBY); BRAD-SHAW, p. 313.

Holotype (M) of *Pecten laminata* J. SOWERBY 1818, p. 4, pl. 205, fig 4; BM 43327; Pl. 4, Fig. 14 herein; Forest Marble (see ARKELL, 1930a: 96) or L. Cornbrash (both Bathonian), Chatley Lodge, Somerset.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Spec Char. Suborbicular, depressed, striated; striae arched, diverging: ears triangular, unequal; the largest plaited.

Text fig. 108: Camptonectes (C.) laminatus - height/length.

The striae are slightly undulated; to the naked eye they appears smooth, but when carefully examined with a lens, minute lines may be traced across them. The plaits upon the ear form a strong character, whence the name.

In shelly limestone (Cornbrash) at Chatley Lodge, in Somersetshire.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of *C. (Camptonectes)* by the coarseness of the divaricate ornament on the disc and the strength of the comarginal lamellae on the anterior auricle of the left valve.

3. AMENDED DESCRIPTION

Essentially similar to C. (C.) auritus except for the diagnostic features (see Section 2), smaller maximum height (59.5 mm, IMLAY, 1964), apparent allometric decrease in N/L (text fig. 112) and somewhat thicker shell. The remaining metric proportions are plotted in text figs. 108-111, 113-115, while the range of ornamental variation is depicted in Pl. 4, Figs. 10, 12–16.

4. DISCUSSION

The holotypes (M) of:

- 1. 'Pecten' laminata J. SOWERBY (BM 43327; Pl. 4, Fig. 14) and
- 2. 'P.' similis J. SOWERBY (BM 43329; Pl. 4, Fig. 12) and the sole observed type of:
- 3. 'P.' anguliferus TERQUEM and JOURDY (ENSM L334; Pl. 4, Fig. 16)

are indistinguishable from the species described in Section 3 on the basis of metric proportions and ornament. The original figure of *Camptonectes* sp; Rossi RONCHETTI and FANTINI SES-TINI (4) is similarly inseparable.

125

Text fig. 109: Camptonectes (C.) laminatus - height/umbonal angle.

Since the number of divaricate striae increases during the ontogeny of the species described in Section 3, species erected for small specimens with relatively few striae ('P.' rigida J. SOWFRBY, 'P.' Langrunensis D'ORBIGNY, 'P.' Woodwardii MORRIS and LYCETT, 'P.' divaricatus PHILLIPS, 'P.' puellaris WHIDBORNE) cannot be accorded a distinction.

Although not from the typical horizon of derivation (Bathonian) there seems no reason to separate *C. platessiformus* W'HITE; IMLAY (from the Bajocian of the U. S. Western Interior) and *C. inexpectatus* HAYAMI (from the L. Lias of Japan) from the species described in Section 3. Both have the coarse divaricate striae and auricular lamellae characteristic of the latter species and the comarginal ornament of the disc seems too weak to allow any possibility that *C. platessiformus* and *C. inexpectatus* might be representative of *C. (Camptochlamys) obscurus.*

The original figure of 'P.' (*Chlamys*) curvivarians DIETRICH depicts a specimen which resembles the species described in Section 3 in its divaricate ornament and all metric proportions apart from H/UA (5). However, Cox (1952) refers specimens with very much stronger ornament to DIETRICH's species and since the stratigraphic range of the latter (Bajocian-Tithonian) extends to considerably younger horizons than that of the

Text fig. 110: *Camptonectes (C.) laminatus* – intersinal distance on left valve/length.

Text fig. 111: *Camptonectes (C.) laminatus* – intersinal distance on right valve/length.

species described in Section 3 it is probable that they are distinct.

Of the synonymous species discussed above the earliest available name for the species described in Section 3 is "P.' laminata J. SOWERBY. Both COX and ARKELL (1948) and CHANNON (1950) refer unfigured Aalenian and Bajocian specimens from the Cotswolds to C. laminatus. Since J. SOWERBY's species is extremely rare in the latter stages in England it is likely that they in fact belong to the much more common species C. (C.) auritus. Conversely Bathonian records of junior synonyms of C. (C.) auritus (listed under the latter species) in QUENSTEDT (1843), TERQUEM and JOURDY (1869), SCHLIPPE (1888), SEMENOW (1896), GREPPIN (1898), COSSMANN (1900), KILIAN and GUÉBHARD (1905), DENINGER (1907), LISSAJOUS (1923) and ROMAN (1926) may well refer to

Text fig. 112: Camptonectes (C.) laminatus – depth of byssal notch/length.

Text fig. 113: Camptonectes (C.) laminatus - height of anterior auricle/length.

C. (C.) laminatus and some of the Bathonian specimens referred to junior synonyms of C. (C.) auritus (see p. 121) in MORRIS and LYCETT (1853), STAESCHE (1926) and DECHASEAUX (1936) undoubtedly belong to C. (C.) laminatus.

The original figure of *C. rigidus* (J. SOWFRBY); ROSSI RON-CHETTI and FANTINI SESTINI depicts a specimen with radial rather than divaricate striae which is thus probably referable to *C. (Camptochlamys) clathratus* rather than *C. (C.) laminatus*. BRADSHAW'S (1978) inclusion of specimens with strong comarginal ornament within *C. laminatus* indicates that his hypodigm probably extended to forms which the present author places in *C. (Camptochlamys) obscurus*.

5. STRATIGRAPHIC RANGE

The earliest record of *C*. (*C*.) *laminatus* is from the L. Lias of Japan (HAYAMI, 1959). Thenceforth, apart from dubious records from the Aalenian of the Cotswolds (see Section 4),

Text fig. 114: Camptonectes (C.) laminatus – posterior hinge length/length.

Text fig. 115: Camptonectes (C.) lammatus - anterior hinge length/length.

the species is unknown until the Bajocian when it is recorded from the U. S. Western Interior (IMLAY, 1964, 1967). Only two specimens from the Bajocian of England (BM L47437, L41956) can be definitely referred to *C. (C.) laminatus*. The species becomes common in the Bathonian but thereafter is extremely rare. Records from New Zealand (MARWICK, 1953) and Afghanistan (ROSSI RONCHETTI and FANTINI SESTINI, 1961) may include Callovian examples while two coarsely ornamented specimens from the Oxfordian of England (BM L20487; LL8339, Pl. 4, Fig. 11) may be referable to *C. (C.) laminatus*.

6. GEOGRAPHIC RANGE

In Europe (text fig. 116) C. (C.) laminatus is largely restricted to France and England. Elsewhere (text fig. 117) the species is only known in numbers in the U. S. Western Interior. Since occurrences there (Bajocian) predate common occurrences in Europe (Bathonian) and postdate records of the species in Japan (L. Lias), it may be that *C. (C.) laminatus* undertook an eastward migration, perhaps making use of the marine connection between western America and Europe which was established in Bajocian times (HALLAM, 1975a). Viewed in these terms records of the species from the Bathonian-Callovian of New Zealand can be taken to represent a relict population.

7. DESCRIPTION OF ECOLOGY

In the Bajocian of the U. S. Western Interior C. (C.) laminatus is the only pectinid present in limestones and shales containing a rather restricted fauna, dominated by 'Ostrea' and Vaugonia. The maximum height attained is 59.5 mm (IM-LAY, 1964).

In the Bathonian of S. England C. (C.) laminatus is recorded from the Minchinhampton Beds (L. Bathonian), shelly oolites containing a diverse fauna, in which the species reaches a maximum height of 58 mm (BM 20744). In the approximately contemporaneous Fuller's Earth Clay on the Dorset coast, fragments of C. (C.) laminatus are common in an otherwise almost monotypic bed of Praeexogyra hebridica. In the U. Bathonian C. (C.) laminatus occurs commonly in the Forest Marble, a grain supported, partly oolitic limestone with a dominantly epibenthic fauna of oysters, Modiolus and Epithyris. The species is also found in the L. Cornbrash, a non-oolitic, shell-fragment limestone with abundant infaunal bivalves (Ceratomya, Pleuromya) and echinoids (Holectypus, Nucleolites) in addition to epifaunal bivalves (Entolium (E.) corneolum, Meleagrinella) and brachiopods (Obovothyris).

In the Bathonian of central England occasional specimens of *C. (C.) laminatus* are found in paralic clay/limestone sequences in association with a low diversity fauna dominated by *Praeexogyra hebridica* but also containing *Placunopsis*, *Modiolus*, *Myopholas*, *Cuspidaria*, and *Kallirhynchia* (TORRENS, 1968). J. D. HUDSON (pers. comm., 1977) has recorded a single specimen from similar facies in the Inner Hebrides.

Text fig. 116: Camptonectes (C.) laminatus - European distribution.

Text fig. 117: Camptonectes (C.) laminatus - World distribution (Callovian reconstruction).

Outside Britain the species appears to be less common but occurs at most levels in the Bathonian. It is not found in the deep water pelagic limestones of the peri-Mediterranean region, the only records from the latter area being from shallow water oolitic deposits (e. g. KILIAN and GUÉBHARD, 1905).

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that apart from showing a general preference for shallow water environments, C. (C.) laminatus was a eurytopic species. Environments supporting a diverse fauna were preferred but in such situations both high energy oobiosparites (e. g. Minchinhampton Beds, Forest Marble) and lower energy biomicrites (e. g. L. Cornbrash) were colonised. The occurrence of C. (C.) laminatus in low diversity faunas such as in the Bajocian of the U. S. Western Interior (lacking in Gryphaea, pholadomyoids and other pectinids) and the Bathonian of the E. Midlands (lacking in cephalopods, ectoprocts and corals) indicates a tolerance of high environmental stress. In the former case the presence nearby of gypsiferous deposits (Gypsum Springs Formation) indicates that high stress was the result of hypersaline conditions (HALLAM, 1975a). However, in the latter case the absence of evaporites suggests that high stress probably resulted from low or fluctuating salinities. The euryhaline oyster Praeexogyra hebridica (see J. Hudson and Palmer, 1976) is a frequent associate in the Bathonian of the E. Midlands but M. J. BRADSHAW reports (pers. comm., 1977) that C. (C.) laminatus is only found, and then rarely, in the beds with the greatest marine influence. The impression thus gained, that C. (C.) laminatus was only able to withstand slightly abnormal salinities, is bolstered by the extreme rarity of the species in the Hebrides, where the Bathonian is of generally less marine aspect, and the more frequent occurrence in the Praeexogyra hebridica Bed in Dorset where the presence of adherent Foraminifera (and of ammonites in the surrounding clays) suggests nearly normal salinities (J. HUDSON and PALMER, 1976).

The frequent association with oysters suggests that C. (C.) laminatus may have used this group for byssal attachment.

9. FUNCTIONAL MORPHOLOGY

Since C. (C.) laminatus is in most morphological respects identical to C. (C.) auritus a similar byssate mode of life can be inferred. The maximum height (59.5 mm) is small enough to suggest that the species was byssate throughout ontogeny. However, the apparent allometric decrease in N/L may indicate that the largest individuals were free living. The more prominent ornament of C. (C.) laminatus may have resulted in a stronger shell than C. (C.) auritus but this does not appear to correlate with any autecological differences, both species being common in high energy environments.

10. ORIGINS AND EVOLUTION

C. (C.) laminatus almost certainly evolved from C. (C.) auritus. The stratigraphically and geographically isolated first occurrence of C. (C.) laminatus (L. Lias, Japan), a subsequent migration (see Section 6), and the sudden appearance of the species in Europe are classic indications of allopatric speciation.

Since the number of divaricate striae increases during the ontogeny of C. (C.) auritus the relatively widely spaced ornament of C. (C.) laminatus may be a product of heterochronic retardation of the rate of ornamental development. The appearance of auricular lamellae cannot, however, be simply explained by heterochrony and suggests that speciation involved at least some change in the structural genome.

There is no evidence for any phyletic evolution within C. (C.) laminatus.

The decline and subsequent extinction of C. (C.) laminatus is correlated with the reappearance in Europe of large numbers of C. (C.) auritus. It may be that after a phase of competitive exclusion in the Bathonian C. (C.) auritus had evolved sufficiently (see p. 124) to outcompete C. (C.) laminatus in the Callovian and Oxfordian.

Camptonectes (Camptonectes) virdunensis (BUVIGNIER 1852) Pl. 4, Figs. 1, 2; text figs. 118–120

Synonymy

- ? 1852 Pecten Zieteneus sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 24, 25.
- 1852 Pecten virdunensis sp. nov; BUVIGNIER, p. 24, pl. 20, figs. 4–6.
- ? 1852 Pecten suprajurensis sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 21–23.
- (?) 1859 Pecten suprajurensis (BUVIGNIER); CONTEJEAN, p. 218.
- ? 1859 *Pecten Flamandi* sp. nov; CONTEJEAN, p. 312, pl. 24, figs. 1, 2.
- ? 1862 Pecten Delessei sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 263, pl. 37, fig. 9.
- 1862 Pecten Sahleri sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 264, pl. 37, fig. 10.
- (?) 1862 Pecten flamandi CONTEJEAN; THURMANN and ÉTALLON, p. 264, pl. 37, fig. 1.
- ? 1862 Pecten Waldeckensis sp. nov; Étallon in Thur-Mann and Étallon, p. 265, pl. 37, fig. 3.
- non 1866 Pecten suprajurensis BUVIGNIER; DE LORIOL and PELLAT, p. 105, pl. 10, fig. 5.
- (?) 1868 *Pecten suprajurensis* BUVIGNIER; DE LORIOL and COTTEAU, p. 644.
 - 1872 Pecten suprajurensis BUVIGNIER; DE LORIOL et al., p. 379, pl. 22, fig. 3.
 - 1874 Pecten titonius sp. nov; GEMMELLARO and DI BLASI, p. 120, pl. 3, figs. 13–15.
- (?) 1875 *Pecten suprajurensis* BUVIGNIER; DE LORIOL and PELLAT, p. 188.
- ? 1875 *Pecten Flamandi* CONTEJEAN; DE LORIOL and PELLAT, p. 194, pl. 22, figs. 6, 7.
- 1875 Pecten virdunensis BUVIGNIER; DE LORIOL and PELLAT, p. 199, pl. 22, fig. 16.
- 1881a Pecten aff. tithonius GEMMELLARO and DI BLASI, BOEHM, p, 183, pl. 40, fig. 5.
- 1882 Pecten (Camptonectes) virdunensis BUVIGNIER; ROEDER, p. 55.
- v 1883 *Pecten tithonius* GEMMELLARO and DI BLASI; BOEHM, p. 605, pl. 67, figs. 21–23.
 - 1894 Pecten Buchi ROEMER; DE LORIOL, p. 53, pl. 6, fig. 7 (non ROEMER sp.).
 - 1903 Pecten tithonius GEMMELLARO and DI BLASI; REMES, p. 201.
- 1904 Pecten (Camptonectes) ledonicus sp. nov; DE LOR-IOL, p. 227, pl. 24, fig. 2.
- v 1905 Pecten virdunensis BUVIGNIER; PERON, p. 223.
- vp 1905 Pecten zieteneus BUVIGNIER; PFRON, p. 224.
- v 1905 Pecten suprajurensis BUVIGNIER; PERON, p. 229.
- ? 1914 Chlamys virdunensis (BUVIGNIER); COSSMANN, p. 2, pl. 5, fig. 1.
- ? 1920 Pecten tithontus GEMMELLARO and DI BLASI; FAURE-MARGUERIT, p. 56.
 - 1925 Pecten virdunensis BUVIGNIER; ROMAN, p. 194.
- 1926 Pecten tithonius GEMMELLARO and DI BLASI; STAESCHE, p. 82, pl. 5.
- 1930a Camptonectes virdunensis (BUVIGNIER); ARKELL, p. 99, pl. 7, figs. 5, 5a.
- (?) 1935 Chlamys suprajurensis (BUVIGNIER); SALIN, p. 140.
 1936 Camptonectes ledonicus (DE LORIOL); DECHAS-EAUN, p. 34, pl. 5, fig. 3.
- non 1936 Camptonectes Zietenus (BUVIGNIER); DECHAS-EAUX, p. 34, pl. 5, figs. 5, 6.

- 1936 Camptonectes Virdunensis (BUVIGNIER); DECHAS-EAUX, p. 34, pl. 5, fig. 4.
- (?) 1936 Camptonectes Flamandi (CONTEJEAN); DECHAS-EAUX, p. 35.
- (?) 1936 Camptonectes suprajurensis (BUVIGNIER); DECHAS-EAUX, p. 36.
- non 1936 Camptonectes suprajurensis (BUVIGNIER); SPATH, p. 106, pl. 41, figs. 2–4, pl. 42, fig. 9, pl. 43, fig. 4. 1939 Camptonectes virdunensis (BUVIGNIER); STEFAN
 - v 1975 V 1975, pl. 19, fig. 13. V 1975 Camptonectes (Camptochlamys) tithonius (GEM-MELLARO and DI BLASI); YAMANI, p. 55.

The type material of *Pecten Virdunensis* BUVIGNIER 1852, p. 24, pl. 20, figs. 4–6 may be in NM. The material was derived from the U. Oxfordian of Verdun (Meuse).

Text fig. 118: Camptonectes (C.) virdunensis - height/length.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'P. testa ovali – elongata, depressa, inaequivalvi, inferne rotundata, superne acuta; concentrice et radiatim striata; striis radiantibus arcuatis, punctulatis, striis concentricis interruptis; valva sinistra convexiori; cardine recto; auriculus posticis, brevibus, obliquis; anticis majoribus.

Longuer 29 mill., hauteur 40, épaisseur 10.

Coquille ovale allongée aplatie, inequivalve, arrondie inférieurement, et (en faisant abstraction des oreillettes) se terminant en pointe vers les crochets, stries rayonnantes arquées, laissant entr'elles des côtes legèrement convexes et se croisant avec des stries concentriques, interrompues sur les côtes, et tres-marquées dans le fond des stries rayonnantes; valve gauche un peu plus bombée que l'autre; charnière droite; oreillettes postérieures courtes et obliques; les antérieures plus allongées; crochets aigus.

Des assises moyennes du coral-rag de Verdun. r.'

Text fig. 119: Camptonectes (C.) virdunensis - height/umbonal angle.

2. AMENDED DIAGNOSIS

Distinguished from all other species of C. (Camptonectes) by the consistently sub-ovate disc (H > L).

3. AMENDED DESCRIPTION

Essentially similar to C. (C.) auritus apart from the diagnostic feature (see Section 2), higher mean H/UA (text fig. 119), apparently isometric growth of H/L (text fig. 118) to the maximum height of 67.5 mm (GEMMELLARO and DI BLASI, 1874), somewhat weaker ornamentation and thinner shell. The sub-ovate form is illustrated in Pl. 4, Figs. 1, 2.

4. DISCUSSION

BUVIGNIER'S (1852) drawings of 'P.' Zieteneus and 'P.' Virdunensis are both based on specimens derived from U. Oxfordian reef facies. However, only that of 'P.' Virdunensis (1) definitely depicts the narrow C. (Camptonectes) species which is common in this facies (see Section 8) and described in Section 3. The dimensions of the figure of P. Zieteneus (2) plot within the range of the species described in Section 3 but the figure is an enlargement and DECHASEAUX (1936), who probably had access to the original, has referred to Camptonectes Zietenus specimens whose dimensions (3) are comparable with C. (C.) auritus, of which they would thus seem to be rare representatives from reef facies (see p. 123). Although PERON (1905) has applied the name 'P.' zieteneus to specimens which are at least in part referable to the species described in Section 3, it seems preferable to adopt the name C. (C.) virdunensis for the latter until such time as the type material of 'P.' Zieteneus (which would have priority as name bearer) is relocated and shown unequivocally to be representative of the species described in Section 3. The figure of 'P.' suprajurensis BUVIGNIER (4) has metric proportions within the range of C. (C.) virdunensis but like that of 'P.' Zieteneus is an enlargement. DE LORIOL and PELLAT (1866) and PERON (1905), who may have had access to the original, have applied the specific name to specimens whose metric proportions (5 and 6 respectively) are comparable with C. (C.) auritus. However, DE LORIOL et al. (1872) figure a specimen which seems to be representative of C. (C.) virdunensis under 'P.' suprajurensis. With the evident possibility of confusion the systematic affinities of the type material of 'P.' suprajurensis and of inadequately characterised specimens referred to the species in CONTEJEAN (1859), DE LORIOL and COTTEAU (1868), DE LORIOL and PELLAT (1875), SALIN (1935) and DECHASEAUX (1936) are best left an open question. Specimens referred to C. suprajurensis by SPATH (1936) can however definitely be placed in C. (C.) auritus (see p. 118).

'P.' Sahleri ÉTALLON, 'P.' titonius GEMMELLARO and DI BLASI and 'P.' ledonicus DE LORIOL are inseparable from C. (C.) virdunensis by their metric proportions (respectively 7, 8)

Text fig. 120: Camptonectes (C.) virdunensis - European distribution.

and 9) and ornament. 'P.' Waldeckensis ÉTALLON is also inseparable by metric proportions (10) and the apparent lack of ornament can probably be attributed to abrasion. The original figure of 'P.' Flamandi CONTEJEAN has H/L (11) very similar to that of C. (C.) virdunensis but H/UA is abnormally small. While this might be due to inaccurate drawing the existence of quite strong comarginal ornament in addition to divaricate striae suggests that CONTEJEAN's species may be referable to C. (Camptochlamys) obscurus. Specimens figured under 'P.' Flamandi by DE LORIOL and PELLAT (1875) may have similar affinities but those referred to CONTEJEAN's species by THURMANN and ÉTALLON (1862) and DECHASEAUX (1936) almost certainly belong in C. (C.) virdunensis.

Chlamys' virdunensis (BUVIGNIER); COSSMANN was compared with *P.' clatbratus* ROEMER while FAURE-MARGUERIT'S (1920) record of GEMMELLARO and DI BLASI'S species was based on specimens said to have 'quadrilateral' ornament. This suggests possible misapplication of these specific names to examples of *C. (Camptochlamys)*.

The affinities of 'P.' Buchi DF LORIOL (non ROEMER) and 'P.' Delessei ÉTALLON are discussed under C. (C.) auritus.

5. STRATIGRAPHIC RANGE

C. (C.) virdunensis is first recorded in the L. Oxfordian of Alsace (ROEDER, 1882). Thenceforth it is found locally until the U. Tithonian when it is recorded from Stramberg in Czechoslovakia (BOEHM, 1883; REMES, 1903).

6. GEOGRAPHIC RANGE

Common occurrences of *C. (C.) virdunensis* are restricted to the central and southern parts of Europe (text fig. 120) where the appropriate reefal facies (see Section 8) is widespread. The only known occurrence of the species outside Europe is a single specimen from the Oxfordian/Kimmeridgian of Somalia (STEFANINI, 1939).

7. DESCRIPTION OF ECOLOGY

C. (C.) virdunensis is found commonly in the U. Oxfordian coral reef facies if the Yonne (PERON, 1905), where it reaches a maximum height of 49 mm (MNS). The diverse associated fauna is described on p. 88. Contemporaneous occurrences of the species in the Meuse (BUVIGNIER, 1852) and Jura (DE LORIOL, 1894, 1904) are from similar facies.

In the Kimmeridgian *C. (C.) virdunensis* is found in coral reef facies at Kelheim (BOFHM, 1881a) and reef derived facies in the E. Paris Basin where the species reaches a maximum height of 60 mm (NM).

In the L. Tithonian C. (C.) virdunensis is recorded from the Nattheim and Neuburg coral reefs in S. Germany (STAESCHE, 1926; YAMANI, 1975). In similar facies in Sicily (GEMMELLARO and DI BLASI, 1874) the species is reported to be common and to attain a maximum height of 67.5 mm.

In the U. Tithonian coral reef at Stramberg C. (C.) virdunensis is recorded commonly by BOEHM (1883).

Of the other unequivocal records of C. (C.) virdunensis listed in synonymy only those in DF LORIOL and PELLAT (1875), DE LORIOL et al. (1872) and ARKFEL (1930a) can be said to refer to specimens which are definitely not derived from reef facies. In the first two cases (from the Kimmeridgian of the Boulonnais and the 'Portlandian' of the E. Paris Basin respectively) the number of specimens is indeterminate and in the last case (U. Oxfordian, Dorset) only one specimen is recorded.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that *C. (C.) virdunensis* was a highly stenotopic species, restricted to coral reef facies. As such its palaeosynecology is comparable with that of the similarly restricted species of *S. (Spondylopecten)*. Like the latter its absence from Kimmeridgian reefs at La Rochelle may relate to their dense structure (see p. 88). Failure to colonise the apparently suitable Oxfordian reefs of England may have stemmed from an intolerance of the lower temperatures of more northerly latitudes.

Recent low convexity, weakly ornamented, thin shelled morphological analogues of C. (C.) virdunensis include Chlamys marshallensis, Ch. madreporarum and Ch. irregularis, all of which live byssally attached either beneath or within coral colonies (WALLER, 1972b).

9. FUNCTIONAL MORPHOLOGY

Since C. (C.) virdunensis is in most morphological respects identical to C. (C.) auritus a similar byssate mode of life can be inferred. The maximum height of C. (C.) virdunensis (67.5 mm) is considerably greater than that of the morphological analogue Ch. marshallensis (30 mm) and this probably implies that the former did not live suspended from a byssus when adult. Large specimens probably gained additional support from contact between the disc and corals. Such support might have been obtained in crevices and the low convexity, minimally ornamented shell would have been well adapted to this microhabitat. The protection against waves and predatory attacks afforded by crevice microhabitats might be the reason behind the possession of only a thin, weak shell.

The high H/L ratio of the shell renders it probable that C. (C.) virdunensis could only have been a poor swimmer.

10. ORIGINS AND EVOLUTION

C. (C.) virdunensis almost certainly arose from C. (C.) auritus, from which it differs significantly only by the greater H/L and H/UA. Since the former ratio decreases while the latter increases during the ontogeny of C. (C.) auritus transspecific evolution could have been brought about by heterochrony. However, simultaneous retardation (of H/L) and acceleration (of H/UA) would have had to have taken place and it is by no means certain whether such a situation could have occurred in a single speciation event (although GOULD (1977) points out that more distantly related taxa may exhibit in the descendant, features which may be attributed to both acceleration and retardation of the ancestral ontogeny).

The limited number of measured specimens (30) precludes an exact evaluation of phyletic trends within C. (C.) virdunensis. However, maximum height does seem to show a genuine increase in the passage from Oxfordian (49 mm) to Kimmeridgian (60 mm) to Tithonian (67.5 mm). This, together with extreme stenotopy, is good evidence for the prevalence of 'K' selection (GOULD, 1977).

Subgenus CAMPTOCHLAMYS ARKELL 1930a

Type species. OD; ARKELL 1930a, p. 102; *Pecten intertextus* ROEMER 1839, p. 27, pl. 18, fig. 23; Oxfordian, N. Germany.

AMENDED DIAGNOSIS

Differing from *C. (Camptonectes)* in that weak radial riblets and comarginal lamellae are present giving rise to a reticulate pattern of sculpture. Jur. (Aalen.-Tithon.), ?Cret., Eur., Asia, Afr., N. Am., ?Austr.

DISCUSSION

In his diagnosis HERTLEIN (1969: N352) stated that *Camptochlamys* ranged only from the Bajocian to the 'Portlandian' (Tithonian) and was restricted to England. The stratigraphic and geographic range can now be extended to that given above. If the Cretaceous forms (see p. 136) are indeed referable to *C. (Camptochlamys)* then the subgenus *Boreionectes* ZAKHAROV 1965 should be regarded as a junior subjective synonym.

ARKELL (1930a) originally created *Camptochlamys* as a subgenus of *Chlamys*. However, Cox (1952) suggested that it be transferred to *Camptonectes* because divaricate striae were seen on a specimen (BM L26669) of the type species *Pecten intertextus* ROEMER (= *C. (Cc.) clathratus* (ROEMER)). The author has been unable to trace the relevant specimen and has yet to find any further examples exhibiting divaricate ornament.

Text fig. 121: Camptonectes (Camptochlamys) obscurus - height/length.

The possibility of removal by abrasion cannot, however, be discounted.

Two groups may be distinguished in Jurassic C. (Camptochlamys) on the following basis:

- 1. Radial striae reaching the ventral margin at all stages in ontogeny (= C. (Cc.) clathratus).
- Radial striae restricted to within a few cm. of the umbo (= C. (Cc.) obscurus).

Camptonectes (Camptochlamys) obscurus (J. SOWERBY 1818) Pl. 4, Figs. 17–22, 24, 25; text figs. 121–130

Synonymy

- v* 1818 Pecten obscura sp. nov; J. SOWERBY, p. 3, pl. 205, fig. 1.
- v* 1819 Pecten lamellosus sp. nov; J. SOWERBY, p. 67, pl. 239.
- v* 1826a *Pecten annulatus* sp. nov; J. DE C. SOWERBY, p. 80, pl. 542, fig. 1.
 - 1833 Pecten obscurus J. SOWERBY; GOLDFUSS, p. 48, pl. 91, fig. 1.
 - 1833 Pecten annulatus J. DE C. SOWERBY; GOLDFUSS, p. 49, pl. 91, fig. 2.
 - 1836 Pecten sublaevis sp. nov; ROEMER, p. 70, pl. 3, fig. 16.
 - 1837 Pecten concinnus sp. nov; KOCH and DUNKER, p. 42, pl. 5, figs. 4a, 4b.
 - ? 1837 Pecten concentricus sp. nov; KOCH and DUNKER, p. 43, pl. 5, fig. 8.
 - 1850 Pecten Germaniae sp. nov; D'ORBIGNY, v. 1, p. 314.
 - 1850 Pecten Obrinus sp. nov; D'ORBIGNY, v. 1, p. 373 (BOULE, 1927, v. 16, p. 131, 1928, v. 17, pl. 6, figs. 5, 6).
 - 1852 Pecten circinalis sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 13–15.
 - 1853 Pecten annulatus J. DF C. SOWERBY; MORRIS and LYCETT, p. 12, pl. 1, fig. 13.
 - 1853 Pecten Germaniae D'ORBIGNY; CHAPUIS and DEWALQUE, p. 214, pl. 29, fig.2.
- v 1858 Pecten lens J. SOWERBY; QUENSTEDT, p. 432, pl. 59, fig. 3 (non pl. 59, fig. 4, non p. 322, pl. 44, fig. 12, p. 354, pl. 46, fig. 20, pl. 48, fig. 8; non J. SOWERBY sp.).
- ? 1859 Pecten Grenieri sp. nov; CONTEJEAN, p. 311, pl. 23, figs. 7–9.
- ? 1859 Pecten Flamandi sp. nov; CONTEJEAN, p. 312, pl. 24, figs. 1, 2.
- 1860 Pecten lamellosus J. SOWERBY; COQUAND, p. 91. 1861 Pecten annulatus J. DE C. SOWERBY; TRAUT-
- schold, p. 446. non 1862 Pecten flamandi Contejfan; Thurmann and
- ÉTALLON, p. 264, pl. 37, fig. 1.
- ? 1862 Pecten Greneieri CONTEJEAN; THURMANN and ÉTALLON, p. 265, pl. 37, fig. 7.
- 1864 Pecten sublaevis ROEMER; V. SEEBACH, p. 100.
- (?) 1864 *Pecten concentricus* KOCH and DUNKER; V. SEE-BACH, p. 100.
 - 1866 Pecten lamellosus J. SOWERBY; DE LORIOL and PELLAT, p. 103, pl. 10, fig. 4.
 - 1869 Pecten exaratus sp. nov; TERQUEM and JOURDY, p. 128, pl. 13, fig. 17.
- non 1872 Pecten Grenieri CONTEJEAN; DE LORIOL et al., p. 382, pl. 22, figs. 5, 6.
 - ? 1875 Pecten Flamandi CONTEJEAN; DF LORIOL and PELLAT, p. 194, pl. 22, figs. 6, 7.
 - v? 1883 Pecten aff. Grenieri Contejean; Boehm, p. 603, pl. 67, figs. 17, 18.

- ? 1883 Pecten lens J. SOWERBY; LAHUSEN, p. 23, pl. 2, fig. 1.
 - 1888 Pecten subannulatus sp. nov; SCHLIPPE, p. 128, pl. 2, fig. 3.
- (?) 1891 *Pecten concentricus* KOCH and DUNKER; BEH-RENDSEN, p. 416.
- non 1893 Pecten (Camptonectes) cf. Grenieri CONTEJEAN; FIEBELKORN, p. 399, pl. 14, fig. 11.
 - ? 1894 Pecten chavattensis sp. nov; DE LORIOL, p. 55, pl. 6, fig. 8.
 - 1910 Pecten (Camptonectes) Broenlundi sp. nov; RAVN, p. 465, pl. 34, figs. 5, 6.
 - 1917 Pecten annulatus J. DE C. SOWERBY; BORISSIAK and IVANOFF, p. 25, pl. 1, fig. 14.
 - 1925 Pecten cf. annulatus J. DE C. SOWERBY; STEFAN-INI, p. 161, pl. 29, fig. 1.
 - v 1926 Camptonectes lens var. annulatus (J. DE C. SOW-ERBY); STAESCHE, p. 79, pl. 3, fig. 12.
 - 1926 *Camptonectes Sowerbyi* sp. nov; STAESCHE, p. 81, pl. 3, fig. 7.
 - ? 1931 Pecten (Camptonectes) cf. lens J. SOWERBY; SOKO-LOV and BODYLEVSKY, p. 55, pl. 4, fig. 7.
 - 1934 Pecten (Camptonectes) lens var. annulatus J. DE C. SOWERBY; STOLL, p. 22.
 - 1935а *Camptonectes brown* sp. поv; Cox, p. 177, pl. 18, figs. 13a, 13b.
 - 1935 Camptonectes lamellosus (J. SOWERBY); SALIN, p. 140.
 - ? 1936 Camptonectes praecinctus sp. nov; SPATH, p. 104, pl. 40, fig. 6, pl. 41, fig. 1.
 - 1936 *Camptonectes lens* var. *exaratus* (TERQUEM and JOURDY); DECHASEAUX, p. 30.
 - 1936 Camptonectes annulatus (J. DE C. SOWFRBY); DECHASEAUX, p. 31, pl. 4, fig. 10.
 - v* 1936 *Camptonectes Richei* sp. nov; DECHASEAUX, p. 32, pl. 4, figs. 12–15, pl. 5, figs. 1, 2.
 - 1936 Camptonectes Sowerbyi STAESCHE; DECHASEAUX, p. 33.
- non 1936 Camptonectes Flamandi (CONTEJEAN); DECHAS-EAUX, p. 35.
 - 1936 Camptonectes circinalis (BUVIGNIER); DECHAS-EAUX, p. 36.
 - 1936 Camptonectes lamellosus (J. SOWERBY); DECHAS-EAUX, p. 36, pl. 5, fig. 11.
- v non 1936 Aequipecten Gremeri (CONTEJEAN); DECHAS-EAUX, p. 52, pl. 8, fig. 7.
 - 1939 Camptonectes Germaniae (D'ORBIGNY); STEFAN-INI, p. 171, pl. 19, fig. 11.
 - 1948 Camptonectes annulatus (J. DE C. SOWERBY); COX and ARKELL, p. 13.
 - 1948 Camptonectes (Camptochlamys) obscurus (J. SOW-FRBY); COX and ARKELL, p. 14.
 - v^{*} 1952 *Camptonectes indicus* sp. nov; Cox, p. 25, pl. 3, figs. 1–4.
 - ? 1961 Camptonectes aff. browni COX; HAYAMI, p. 67.
 - 1961 Camptonectes annulatus (J. DE C. SOWERBY); ROSSI RONCHETTI and FANTINI SESTINI, p. 121, pl. 13, fig. 10.
 - ? 1974 Camptonectes waggrakinensis sp. nov; SKWARKO, p. 82, pl. 25, figs. 1, 4.
 - p 1978 Camptonectes laminatus (J. SOWERBY); BRAD-SHAW, p. 313 (non J. SOWERBY sp.).
 - 1978 Camptonectes (Camptochlamys) obscurus (J. SOW-ERBY); BRADSHAW, p. 314.
 - 1979 Camptonectes annulatus (J. DE C. SOWERBY); T. PALMER, p. 196.

Holotype (M) of *Pecten obscura* J. SOWERBY 1818, p. 3, pl. 205, fig. 1; BM 43325; Pl. 4, Fig. 24 herein; H: 45, L: 38, HAA: 8.5, AH: 15, N: 5.5, UA: 93; Stonesfield Slate (L. Bathonian), Stonesfield, Oxfordshire.

Text fig. 122: Camptonectes (Camptochlamys) obscurus - height/umbonal angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Spec. Char. Sub-orbicular, depressed, with obscure arched longitudinal rugae upon the surface; ears large.

Somewhat longer than wide: the surface is dull, almost smooth; but it has some indications of diverging furrows. The edge is thick.

Occurs upon the sandy Limestone slate of Stonesfield, near Oxford. My specimen was forwarded to me long since by Dr. WILLIAMS.'

2. AMENDED DIAGNOSIS

Distinguished from *C. (Camptochlamys) clathratus* by the fact that the radial striae extend no more than a few centimetres from the umbo and are thereafter replaced by divaricate striae.

3. AMENDED DESCRIPTION

Essentially similar to *C. (Camptonectes) auritus.* Differing by the presence of comarginal lamellae and radial striae (Pl. 4, Fig. 22) of variable length, greater maximum height (122 mm, OUM J37483; ?206 mm, see Section 7), higher mean H/UA (text fig. 122), greater convexity of the left valve, isometric increase in anterior hinge length and right valve intersinal distance to give higher values of AH/L (text fig. 127) and I_R/L (text fig. 124) late in ontogeny, isometric increase of anterior auricle height to give lower values of HAA/L (text fig. 126) late in ontogeny and allometric increase of posterior hinge length to give higher values of PH/L (text fig. 128) late in ontogeny. The remaining metric characters are plotted in text figs. 121, 123, 125.

Unlike C. (C.) auritus there appear to be no phyletic changes in metric proportions beyond an increase in size and a possible accentuation of allometric decrease in H/L in Tithonian as compared to Bathonian individuals.

Text fig. 123: Camptonectes (Camptochlamys) obscurus - intersinal distance on left valve/length.

4. DISCUSSION

136

A disjunct stratigraphic distribution with two distinct peaks in abundance (see Sections 5, 7) has resulted in the evolution of two taxonomic schemes (centred on species erected by the SOWERBYS for Bathonian and Tithonian examples) for M. and U. Jurassic representatives of the species described in Section 3. There is, however, no biological basis for maintaining a distinction and in the absence of any evidence for the existence of separate lineages such differences as exist between earlier and later populations (see Section 3) can be most parsimoniously explained in terms of phyletic evolution (see Section 10). Large L. Cretaceous forms (usually referred to *Camptonectes cinctus* J. SOWERBY) are probably also phyletic descendants but their systematics are excluded from this discussion because the present author has yet to survey the literature and has examined relatively few specimens. Suffice it to say that metric proportions (c) would plot within the range of Jurassic ontogenies if these were projected to larger sizes.

The following types and figures of types from the Jurassic are inseparable from the species described in Section 3 on the basis of metric proportions:

- 1. The holotype (M) of 'Pecten' obscura J. Sowirby (BM 43325; Pl. 4, Fig. 24).
- 2. Two syntypes of 'P.' lamellosus J. SOWERBY (BM 43299; Pl. 4, Fig. 17),
- 3. The holotype (M) of '*P*.' annulatus J. DE C. SOWERBY (BM 43301; Pl. 4, Fig. 18),

- 4. The sole observed type of 'P.' exaratus TERQUEM and JOURDY (ENSM L335).
- 5. A paratype of Camptonectes indicus Cox (BM L75265; Pl. 4, Fig. 25).
- 6. The type series of C. Richei DECHASEAUX (NM).
- 7. The original figure of 'P.' sublaevis ROEMER.
- 8. The original figure of 'P.' concinnus KOCH and DUNK ER.
- 9. The original figure of C. Sowerbyi STAESCHE.

In none of the foregoing cases does any difference in ornament provide a basis for distinction. The subdued ornamentation of 'P.' obscura, 'P.' exaratus and C. Richei is clearly the result of wear. Varietal use of 'P.' annulatus in STAESCHE (1926) and STOLL (1934) and of 'P.' exaratus in DECHASEAUX (1936) does not depart from the original authors' hypodigms.

'P.' sublaevis ROEMER should be permanently rejected since it is a junior primary homonym of 'P.' sublaevis Young and BIRD (itself a junior subjective synonym of Pseudopecten (Ps.) equivalvis).

Figures of the types of 'P.' Obrinus D'ORBIGNY, P. circinalis BUVIGNIER, 'P.' subannulatus SCHLIPPE, 'P.' Broenlundi RAVN and C. browni Cox were not measured but in each case the ornament does not differ significantly from that of the species described in Section 3. HAYAMI's (1961) record of a specimen resembling Cox's species must be treated sceptically in view of the disjunct geographic position (Japan) and lack of a figure. Although a figure is provided of C. waggrakinensis SKWARKO (from W. Australia) the original is very poorly preserved. Nevertheless comparison with 'P.' cinctus J. SOWERBY suggests that it could be synonymous with the

Text fig. 126: Camptonectes (Camptochlamys) obscurus - height of anterior auricle/length.

138

Text fig. 127: Camptonectes (Camptochlamys) obscurus - anterior hinge length/length.

Text fig. 128: Camptonectes (Camptochlamys) obscurus - posterior hinge length/length.

species described in Section 3 (see above). The figure of 'P.' chavattensis DE LORIOL depicts a specimen with reticulate ornament, as is characteristic of C. (Camptochlamys), and mention in the description of 'punctae' on the right valve suggests that it may be referable to the species described in Section 3.

'P.' Germaniae D'ORBIGNY was erected for a specimen from the Kimmeridgian assigned to 'P.' annulatus J. DE C. SOWERBY by GOLDFUSS (1833). Presumably D'ORBIGNY (1850) considered that the horizon of derivation merited a distinction from J. DE C. SOWERBY's species, whose holotype is from the Bathonian. However, the present author's inclusion of both M. and U. Jurassic specimens within the same hypodigm renders this insufficient grounds for a specific separation.

The original figure of 'P.' concentricus KOCH and DUNKER appears to depict the comarginally ornamented right valve of *Entolium (E.) orbiculare* but the fact that v. SEEBACH (1864) and BEHRENDSEN (1891), both of whom may have examined the type material, have applied the specific name to specimens with radial as well as comarginal ornament suggests that it may be a reversed illustration of the left valve of the species described in Section 3. Although H/L and H/UA (10) are both high for the latter species they are considerably less distant than from *E. (E.) orbiculare*.

Although one of the original figures (pl. 40, fig. 6) of *C. praecinctus* SPATH (Tithonian) has metric proportions (H: 168, L: 165, UA: 128) within the range of projected ontogenies of the species described in Section 3, the other (pl. 41, fig. 1) has a rather low H/UA (100/40), which, together with the poor development of comarginal lamellae, suggests that the species may in fact be synonymous with *C.* (*C.*) auritus.

The affinities of CONTEJEAN'S (1859) species 'P.' Grenieri and 'P.' Flamandi and secondary references thereto are dealt with under Radulopecten strictus and C. (C.) virdunensis respectively.

The original (GPIT) of '*P.'lens* J. SOWERBY; QUENSTEDT (1858, pl. 59, fig. 3 only) has radial striae in the umbonal reg-

ion and is clearly referable to the species described in Section 3 rather than SOWERBY'S species (= C. (C.) auritus). Records of J. SOWERBY'S species in LAHUSEN (1883) and SOKOLOV and BODYLEVSKY (1931) are discussed under C. (C.) auritus. Specimens said to have strong comarginal ornament but which were referred to C. laminatus by BRADSHAW (1978) are probably representative of the species described in Section 3.

Of the synonymous species discussed above the earliest available name for the species described in Section 3 is '*P*.' *obscura* J. SOWERBY.

5. STRATIGRAPHIC RANGE

The first records of C. (Cc.) obscurus are from the Aalenian (Murchisonae zone) of Swabia (STAESCHE, 1926). A few specimens are recorded from the Bajocian of S. Germany (QUENSTEDT, 1858), E. France (DECHASEAUX, 1936) and the Cotswolds (BM 73397, L5125, L17573, L41949, L84344, L95180, LL24287) but the species does not become common until the Bathonian. Callovian records from Europe are limited to LAHUSEN (1883) and a few specimens in DM while Oxfordian records are limited to BUVIGNIER (1852). Definite records from the Kimmeridgian are restricted to GOLDFUSS (1833), KOCH and DUNKER (1837), V. SEEBACH (1864) and DE-CHASEAUX (1936). However, the species becomes common again in the Tithonian and if specimens such as BM L1354 and L24189 are included within C. (Cc.) obscurus (see Section 4) the stratigraphic range can be said to extend into the L. Cretaceous at least as far as the Hauterivian.

6. GEOGRAPHIC RANGE

C. (Cc.) obscurus was essentially a Boreal species. Thus for most of its stratigraphic range distribution was centred in N. Europe (text fig. 129) and in the later (Tithonian-L. Cretaceous) parts of its stratigraphic range the centre of distribution shifted outside continental Europe, into Britain (see Section 7).

Text fig. 129: Camptonectes (Camptochlamys) obscurus - European distribution.

Text fig. 130: Camptonectes (Camptochlamys) obscurus - World distribution (Callovian reconstruction).

The paucity of Callovian records in Europe (see Section 5) is probably the result of the widespread development of unfavourable clay facies (see Section 8). Records from the Callovian of Somalia (Cox, 1935a) and India (Cox, 1952) and ?Callovian of Afghanistan (Rossi RONCHETTI and FANTINI SES-TINI, 1961) may thus signify migration to more suitable environments (text fig. 130). Similarly the rarity of the species in the Bajocian and Oxfordian of Europe may correlate with occurrences in the Bajocian of Somalia (STEFANINI, 1939) and possible occurrences in the Bajocian (SKWARKO, 1974) and Oxfordian (a poorly preserved, unlocalised and unnumbered specimen in the BM) of Australia. However, in these cases exclusion from Europe was more probably the result of competition with *C. (C.) auritus* since suitable sedimentary environments were widespread (see Section 8).

7. DESCRIPTION OF ECOLOGY

In the Aalenian of Swabia C. (Cc.) obscurus occurs in chamosite oolites in association with common examples of *Propeamussium (P.) pumilum* and *Entolium (E.) corneolum*. The maximum height attained is 74 mm (GPIT). C. (C.) auritus is a fairly rare associate but in similar almost contemporaneous sediments in central England (Northampton Sand Ironstone) it is common while C. (Cc.) obscurus is unknown. C. (C.) auritus is also common throughout the Bajocian in Europe but C. (Cc.) obscurus is generally rare (see Section 5). However an isolated specimen (STAESCHE, 1926) attains a maximum height of 93.8 mm.

In the Bathonian of Britain C. (Cc.) obscurus is particularly common in the Stonesfield Slate (L. Bathonian) where the most common faunal associates are oysters and 'Trigonia impressa' together with rhynchonellid brachiopods and cidaroid echinoids. The sediments are flat laminated calcareous sandstones and sandy oolites. The species also occurs, albeit somewhat less commonly, in grain supported shelly oolites of roughly the same age at Minchinhampton and in the U. Bathonian Forest Marble. In both cases C. (C.) laminatus is a fairly common associate and at the former locality C. (*Cc.*) *clathratus* also occurs quite frequently. The sedimentary and faunal associations of most other Bathonian occurrences of *C*. (*Cc.*) *obscurus* are unclear. However in the M./U. Bathonian White Limestone Formation of the Cotswolds the species occurs in muddy lime sands, where the principal faunal associates are *Praeexogyra hebridica* and *Isognomon isognomoides*, and in shelly micrites where the brachiopod *Epithyris* is the dominant faunal element. *C.* (*Cc.*) *obscurus* is absent from lime sands and pelleted lime muds in the same formation (T. PALMER, 1979) but it may occur in sands and oyster reefs further northeast in the Rutland Formation (BRADSHAW, 1978, see Section 4). The maximum height attained by the species in the Bathonian is 69 mm (BM L10962).

C. (Cc.) obscurus is rare in the Callovian of W. Europe (see Section 5), where the stage is widely developed in clay facies, but is known from a limestone sequence containing chamosite oolite beds in Russia (LAHUSEN, 1883). Oolitic deposits are widespread in the Oxfordian of Europe but *C. (Cc.) obscurus* is absent from them, the only record of the species in the Oxfordian being from marls (BUVIGNIER, 1852). *C. (C.) auritus* and *C. (C.) clathratus* are however quite common in Oxfordian oolites as well as other sediments.

C. (Cc.) obscurus is rare in the L. Kimmeridge Clay (Kimmeridgian) but is occasionally found in the sandy marginal facies developed in the upper part of the formation (M. Tithonian) in S. England and N. W. France. C. (C.) auritus is much more common at the latter horizon but in the U. Tithonian it is rare and C. (Cc.) obscurus is common, reaching a maximum height of 122 mm (OUM J37483). In Dorset C. (Cc.) obscurus occurs most abundantly at three levels in the U. Tithonian; within the Portland Sand Formation, in the Exogyra Beds (Corton Hill Member), and within the Portland Stone Formation, in the Basal Shell Bed (Dungy Head Member) and the Freestone Series (Winspit Member). In each case there is a diverse associated ammonite, gastropod and bivalve fauna including the genera Trigonia, Protocardia, Isognomon, Pleuromya and Exogyra. Records from Tithonian marls and limestones (Calcaire de Barrois) in the E. Paris Basin (SALIN, 1935) are associated with a much less diverse fauna (lacking in ammonites and dominated by 'Corbula', 'Leptoxis', 'Lioplax' and 'Melania') and specimens from the 'Kimmeridgian/Portlandian' (KOCH and DUNKER, 1837) and 'L. and U. Kimmeridge' (V. SEFBACH, 1864) of L. Saxony are probably derived from horizons with a similarly restricted fauna (HOLDER, 1964; HUCKRIEDF, 1967).

Specimens usually referred to *C. cinctus* J. SOWERBY but which are likely to be phyletic descendants of *C. (Cc.) obscurus* (see Section 4) are found in the Valanginian and Hauterivian of Lincolnshire, where they reach a maximum height of 206 mm (BM L1354). The horizons of greatest abundance appear to be the Claxby Ironstone (a chamosite oolite containing a diverse fauna including the bivalves *Exogyra*, *Trigonia* and *Cucullaea* together with ammonites and belemnites) and the Tealby Limestone (a sequence of sandy limestones, clays and shales). A single specimen (BM L24189) is known from roughly contemporaneous deposits in N. Germany but there are no records from further south in Europe.

8. INTERPRETATION OF ECOLOGY

The oolitic limestones and ironstones most commonly occupied by *C. (Cc.) obscurus* are indicative of generally high energy levels and SELLWOOD and MCKERROW (1974) have suggested that periodic storms were an important factor during the deposition of the Stonesfield Slate, in which the species is particularly common. The levels at which *C. (Cc.) obscurus* is most abundant in the U. Tithonian of Dorset are indicative of regression (TOWNSON, 1975) and one can assume that shallowing of the sea resulted in higher environmental energy from the increased effect of waves and currents.

The rarity of *C. (Cc.) obscurus* in most argillaceous sequences suggests that the species could not tolerate low energy environments. However, evidence from the White Limestone Formation, where low energy environments were apparently preferentially colonised, belies this reasoning and suggests moreover that the abundance of the species in oolitic limestones, ironstones etc. is not due to a particular liking for high energy environments. A dependence on the pre-existence of some specific element of the fauna (perhaps oysters) for the provision of byssal attachment sites for the juvenile (see Section 9) may have been the primary determinant of distribution.

The occurrence of *C. (Cc.) obscurus* in the Calcaire de Barrois is evidence, according to the facies interpretation of SALIN (1935), of a tolerance of reduced salinities. The occurrence of the species in the Kimmeridgian/Tithonian sequence of L. Saxony provides further evidence of a tolerance of reduced salinities if the facies interpretation of HUCKRIFDE (1967) is followed but is evidence of an additional tolerance of high salinities if the facies interpretation of JORDAN (1971) is adopted. If confirmed, records from the Bathonian of the E. Midlands would be evidence of a tolerance of fluctuating as well as low salinities (see, p. 129).

There is a very noticeable inverse correlation between the numbers of C. (Cc.) obscurus and C. (C.) auritus at any one time or place which is strongly suggestive of competition.

There is however little evidence of a similar reaction between C. (*Cc.*) *obscurus* and *C*. (*C.*) *laminatus* and although the rarity of *C*. (*Cc.*) *obscurus* in the Oxfordian is matched by a corresponding abundance of *C*. (*Cc.*) *clathratus* competition can hardly be invoked in explanation because the species occur together in numbers in the Bathonian. The rarity of *C*. (*Cc.*) *obscurus* in the Oxfordian is more probably the result of competitive exclusion by *C*. (*C.*) *auritus* which occurs widely in the stage.

9. FUNCTIONAL MORPHOLOGY

Since C. (Cc.) obscurus is comparable to C. (C.) auritus in most aspects of morphology, a similar juvenile byssate followed by adult reclining mode of life can be inferred. The greater shell thickness and H/UA of C. (Cc.) obscurus probably led to the loss of swimming ability at an earlier age, although some compensation may have been derived from the greater convexity of the left valve. In spite of an apparent phyletic reduction in H/L it is still very doubtful whether adult representatives of later populations could have swum.

STAESCHE (1926) considered the strong comarginal lamellae on the disc to be an adaptation for stability in high energy environments. However, in view of the fact that lamellae are usually more strongly developed on the left valve (not in contact with the substrate) and that the non-lamellate species *C*. *(C.) laminatus* occurs with *C*. *(Cc.) obscurus* in high energy environments, STAESCHE's hypothesis is implausible. A more likely explanation is that the lamellae provided camouflage or, as STAESCHF also hypothesised, that they served to strengthen and stiffen the shell against predatory attacks, to which the animal must have been susceptible in the sessile adult stage.

10. ORIGINS AND EVOLUTION

C. (Cc.) obscurns almost certainly arose from C. (C.) auritus. Regulatory gene evolution leading to heterochrony can be invoked to explain differences in UA, HAA and AH. However, simultaneous acceleration (for the first two) and retardation (for the last) would have to have occurred (see p. 132). A more fundamental alteration of the genome is probably indicated by the appearance of such new features as comarginal lamellae and radial striae and, in the absence of ancestral allometry, by the higher I_R/L of C. (Cc.) obscurus.

Within C. (Cc.) obscurus maximum height undergoes an overall phyletic increase in the passage from Aalenian (74 mm) to Bajocian (93.8 mm) to Bathonian (69 mm) to Tithonian (122 mm) to Valanginian (206 mm). The temporary reversal to the otherwise smooth trend in the Bathonian is undoubtedly a real phenomenon since a large number of specimens are available for measurement from the stage. There seems also to be a phyletic reduction in H/L from the Bathonian to Tithonian but the lack of data from intermediate stages precludes an assessment of whether or not evolution occurred gradually. Since H/L decreases during the ontogeny of ancestral populations the phyletic reduction in H/L could have been brought about by acceleration of shape development with respect to size.

Camptonectes (Camptochlamys) clathratus (ROEMER 1836) Pl. 4, Figs. 23, 26, 27, Pl. 5, Figs. 1–3, 6; text figs. 131–136

Synonymy

- 1836 Pecten clathratus sp. nov; ROEMER, p. 212, pl. 13, fig. 9.
- 1839 Pecten intertextus sp. nov; ROEMER, p. 27, pl. 18, fig. 23.
- 1842 *Pecten collineus* sp. nov; BUVIGNIER in SAUVAGE and BUVIGNIER, p. 533, pl. 4, fig. 7.
- v*? 1850 Pecten Rosimon sp. nov; D'ORBIGNY, v. 1, p. 327 (BOULE, 1913, v. 8, p. 92, pl. 2, figs. 26, 27).
- v* 1852 Pecten Michaelensis sp. nov; BUVIGNIER, p. 24, pl. 32, fig. 4.
- v* 1853 Pecten retiferus sp. nov; MORRIS and LYCETT, p. 9, pl. 1, figs. 15, 15a.
 - 1853 Pecten personatus GOLDFUSS; MORRIS and LY-CETT, p. 11, pl. 1, fig. 17 (non fig. 17a, non GOLD-FUSS sp.).
 - 1853 Pecten clathratus ROEMER; MORRIS and LYCETT, p. 13, pl. 1, figs. 19, ?19a.

- 1860 Pecten clathatrus ROEMER; COQUAND, p. 79.
- 1862 Pecten pertextus sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 257, pl. 36, fig. 7.
- 1862 Pecten Frotei sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 258, pl. 36, fig. 9.
- 1863 Pecten Michaelensis BUVIGNIER; LYCETT, p. 34, pl. 33, fig. 3.
- 1863 Pecten intertextus ROEMER; DOLLFUS, p. 81, pl. 15, figs. 1–3.
- 1867 Pecten retiferus MORRIS and LYCETT; LAUBE, p. 10.
- 1875 Pecten intertextus ROEMER; DE LORIOL and PELLAT, p. 200, p. 23, fig. 2.
- 1893 Pecten intertextus ROEMER; DE LORIOL and LAM-BERT, p. 138, pl. 11, figs. 8, 8a.
- 1894 Pecten intertextus ROEMER; DE LORIOL, p. 40.
- 1904 Pecten intertextus ROEMER; DE LORIOL, p. 216.
- 1905 Pecten (Chlamys) retiferus MORRIS and LYCETT; KILIAN and GUÉBHARD, p. 758.
- 1905 Pecten intertextus ROEMER; PERON, p. 219.
- non 1906 Chlamys rosimon (D'ORBIGNY); COSSMANN, p. 4, pl. 1, figs. 7–9.

- 1906 *Chlamys retifera* (MORRIS and LYCETT; COSS-MANN, p. 5, pl. 1, figs. 10, 11.
- 1907a *Chlamys retifera* (MORRIS and LYCETT); COSS-MANN, p. 240, pl. 8, figs. 14, 15.
- 1923 *Chlamys Lafayi* sp. nov; LISSAJOUS, p. 159, pl. 30, figs. 1, 2.
- v non 1926 Chlamys Rosimon (D'ORBIGNY); STAESCHE, p. 38, pl. 2, fig. 1.
 - v 1930a Chlamys (Camptochlamys) intertextus (ROEMER); ARKELL, p. 103, pl. 8, figs. 1, 2.
 - ? 1931 Pecten (Chlamys) pertextus var. densiradiatus var. nov; SOKOLOV and BODYLEVSKY, p. 54, pl. 3, figs. 6a, 6b.
 - (?) 1936 *Camptochlamys Rosimon* (D'ORBIGNY); DECHAS-EAUX, p. 38.
 - 1936 Camptochlamys retiferus (MORRIS and LYCETT); DECHASEAUX, p. 39.
 - 1936 Camptochlamys Lafayi (LISSAJOUS); DECHAS-FAUX, p. 39.
 - 1936 Camptochlamys intertextus ROEMER; DECHAS-EAUX, p. 39.

- 1948 Camptonectes (Camptochlamys) intertextus (ROEMER); COX and ARKELL, p. 14.
- (?) 1948 Camptonectes (Camptochlamys) rosimon (D'ORB-IGNY); COX and ARKELL, p. 14.
 - ? 1961 Camptonectes rigidus (J. SOWERBY); ROSSI RON-CHETTI and FANTINI SESTINI, p. 122, pl. 13, figs. 1, 2 (non J. SOWERBY sp.).
 - 1961 Camptochlamys retiferus (MORRIS and LYCETT); BARBULESCU, p. 701.
 - 1961 Camptochlamys intertextus (ROEMER), BARBU-LESCU, p. 701.
 - 1964 Camptonectes retiferus (MORRIS and LYCETT); J.-C. FISCHER, p. 19.
 - ? 1977 Camptonectes (Camptochlamys) cf. intertextus (ROEMER); KELLY, p. 88, pl. 1, figs. 18a-c, 19, 20.

The holotype (M) of *Pecten clathratus* ROE-MER 1836, p. 212, pl. 13, fig. 9 is probably in the ROEMER-PELIZAEUS-Museum, Hildesheim, W. Germany. It was derived from the Oxfordian of N. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

P. testa lineis capillaribus acutis radiantibus rectis concentricisque regulariter clathrata, interstitiis planis quadratis.

Die ziemlich dünne Schale scheint fast kreisrund gewesen zu sein und trägt oben zahlreiche, haarförmige, schief in die Höhe gerichtete, gleich weit von einander stehende Linien, von den gerade ausstrahlende mit concentrischen ein sehr zierliches, feines Gitterwerk bilden. Die viereckigen, meist mehr breiten als hohen Flächen zwischen den Linien sind ganz flach.

Das abgebildete Bruchstück fand sich im oberen Coral rag des Spitzhuts mit *Terebr. tetragona* und *Turbo princeps* zusammen.⁶

2. AMENDED DIAGNOSIS

Distinguished from *C. (Cc.) obscurus* by the fact that the radial striae reach the ventral margins at all stages in ontogeny.

Text fig. 133: Camptonectes (Camptochlamys) clathratus - intersinal distance on left valve/length.

3. AMENDED DESCRIPTION

Essentially similar to *C. (Cc.) obscurus* apart from the diagnostic feature (see Section 2), possibly somewhat higher mean H/UA (text fig. 132), apparent allometric decrease in AH/L and I_L/L (text figs. 134, 133), lower comarginal lamel-lae and usual lack of divaricate striae (see p. 133). There are between 33 and 45 radial striae on the left valve and between 45 and 68 on the right valve (Pl. 4, Figs. 23, 26, 27, Pl. 5, Figs. 1–3, 6).

Other metric proportions are plotted in text figs. 131, 135.

4. DISCUSSION

As for *C. (Camptochlamys) obscurus* the disjunct stratigraphic range of the species described in Section 3 combined with a failure to appreciate the range of ornamental variation has led to the evolution of two taxonomic schemes for M. and U. Jurassic representatives. ARKELL (1930a) considered that Oxfordian specimens (referred to '*Chlamys*' (*Cc.*) intertextus (ROEMER)) differed from Bathonian specimens (referred to '*Ch.*' (*Cc.*) retiferus (MORRIS and LYCETT)) by the possession of 45–50 compared with 35–40 radial striae. Since ARKELL failed to recognise the disparity in numbers of striae between right and left valves this gives an incomplete picture of variation. However, if one assumes that counts were taken only from left valves, as seems likely, then the existence of Oxfordian specimens with 40 striae (e. g. YM 557) and Bathonian specimens with 45 striae (e. g. BM 65901) clearly contradicts ARKELL's hypothesis. Metric proportions offer no other grounds for a distinction, the larger Oxfordian forms plotting within the range of extrapolated Bathonian ontogenies (text figs. 131–135). Moreover the figured original of '*Pecten' intertextus* ROEMER, although only a broken specimen, is indistinguishable from the lectotype of 'P.' retiferus MORRIS and LYCETT (IGS 9169; Pl. 4, Fig. 26).

On the basis of the preceding discussion the Oxfordian species 'P.' pertextus ÉTALLON and 'P.' Michaelensis BUVIG-NIER (both described as having finer ornament than 'P.' intertextus) cannot be separated from the species described in Section 3. In addition the figured original of 'P.' Michaelensis (ENSM L340; Pl. 5, Fig. 3) has metric proportions (1) which plot within the range of projected ontogenies of the species described in Section 3. 'Ch.' Lafayi LISSAJOUS was separated from 'P.' Michaelensis only by a difference in ornament at large sizes. Since the figured original of the latter species turns

Text fig. 134: Camptonectes (Camptochlamys) clathratus - anterior hinge length/length.
out to be a large abraded specimen this is an insufficient basis for a specific distinction.

The present author has been unable to trace the original reference to 'P.' collineus BUVIGNIER but ARKELL (1930a) places the species in synonymy with 'Ch.' (Cc.) intertextus. 'P.' Frotei ÉTALLON was compared with 'P.' collineus in the original description and metric proportions of the original figure (2) plot within the range of the species described in Section 3.

The holotype (M) of 'P.' Rosimon D'ORBIGNY (MNO 2905) is a poor specimen whose large number of radial striae suggests that it may be referable to Radulopecten vagans (the interpretation followed by COSSMANN [1906]) rather than the species described in Section 3 (the interpretation apparently followed by DECHASEAUX [1936] and COX and ARKELL [1948]). The specimen (GP1T 1592/5; Pl. 8, Fig. 16) referred to 'Ch.' rosimon by STAESCHE (1926) is much more strongly ornamented than D'ORBIGNY's holotype and belongs in Ch. (Ch.) textoria.

Of the species considered to be synonymous above, 'P.' intertextus ROEMER was the first designated. However, an earlier species 'P.' clathratus ROEMER has the characteristic reticulate ornament of the species described in Section 3 and although only described from a fragment must be given historical precedence. One of MORRIS and LYCETTS(1853) figures of 'P.' clathratus (pl. 1, fig. 19) is indistinguishable from ROEMER's species but the other (pl. 1, fig. 19a) is more reminiscent of C. (C.) laminatus. The same authors also figure an example of ROEMER's species (pl. 1, fig. 17) under the non-synonymous specific name 'P.' personatus GOLDEUSS (see p. 24). The other figured example of 'P.' personatus (pl. 1, fig. 17a) may be referable to C. (C.) laminatus. A specimen referred to the non-synonymous species C. rigidus (J. SOWERBY) by ROSSI RONCHETTI and FANTINI SESTINI (1961) is discussed on p. 127.

KFLLY's (1977) record of C. (Cc.) cf. intertextus from the M. Volgian can only tentatively be placed in synonymy because the small size of his specimens allows the possibility of confusion with juveniles of C. (Cc.) obscurus, a common species at this horizon. Similar reasoning applies to the tentative inclusion of 'P.' (Cb.) pertextus var. densiradiatus SOKOLOV and BODYLEVSKY (1931).

5. STRATIGRAPHIC RANGE

Two specimens (BM LL1593, LL23688) from the Bajocian of S. England are probably referable to C. (Cc.) clathratus as

Text fig. 135: Camptonectes (Camptochlamys) clathratus - posterior hinge length/length.

are a number of specimens from the U. Bajocian in DM. DE-CHANIAUX (1936) records an indeterminate number of specimens from the Bajocian of the E. Paris Basin. In the appropriate facies (see Section 8) the species is quite common in the Bathonian but it becomes rare again in the Callovian. Two specimens are known from the U. Cornbrash of Yorkshire (YM 592, BM 47434), a few specimens reside in DM, and DE-CHASEAUX (1936) records an indeterminate number of specimens from the Callovian of the E. Paris Basin. The species is locally quite common in the Oxfordian but becomes rare in the Kimmeridgian, unequivocal records being limited to NW France (BM 25346, 65895; DOLLFUS, 1863), W. France (one specimen, author's collection) and the Jura (THURMANN and ÉTALLON, 1862). KFLLY (1977) records nine specimens, which may be referable to *C. (Cc.) clathratus* (see Section 4) from the M. Volgian (M. Tithonian) of Lincolnshire.

6. GEOGRAPHIC RANGE

C. (Cc.) clathratus occurs widely in northern and central Europe (text fig. 136), its local distribution and abundance being largely controlled by the development of the appropriate sedimentary facies (see Section 8). Records outside Europe are limited to two dubious specimens (see Section 4), one from Afghanistan (ROSSI RONCHETTI and FANTINI SESTINI, 1961) and the other from Spitzbergen (SOKOLOV and BODY-LEVSKY, 1931).

Text fig. 136: Camptonectes (Camptochlamys) clathratus - European distribution.

7. DESCRIPTION OF ECOLOGY

In the Bathonian of England C. (Cc.) clathratus is found quite commonly in the Minchinhampton Beds (L. Bathonian) where it reaches a maximum height of 57.5 mm (BM LL1593). The sediments are grain supported shelly oolites containing a diverse gastropod and bivalve fauna, including C. (Cc.) obscurus (MORRIS and LYCFTT, 1851–55). The species is also quite common in the roughly contemporaneous Calcaire à Polypiers of Normandy and occurs in a coral bed in Indre with Spondylopecten (S.) palinurus and the 'coarse' phenotype of Chlamys (Ch.) textoria (COSSMANN, 1907a; J.-C. FISCHER, 1964).

In the Oxfordian of Yorkshire large specimens of *C. (Cc.)* clathratus occur in the Malton Oolite (Plicatilis zone), reaching a maximum height of 140 mm (YM 492D). The sediments are oolites, usually poorly fossiliferous, but locally containing coral debris and such bivalves as the 'coarse' phenotype of *Ch. (Ch.) textoria, Lima, Exogyra, Opis, Gervillia* and *Trichites,* together with the gastropod *Pseudomelania* (J. WRIGHT, 1972). *C. (Cc.) clathratus* is rare in contemporaneous oolites on the Dorset coast (Osmington Oolite) in which coral debris is absent. The species is reported to be COMMON in reef and reef-derived sediments in the Yonne (PERON, 1905) and records from the Oxfordian of the Meuse (BUVIGNIER, 1852), Jura (DE LORIOL, 1894, 1904) and L. Saxony (ROEMER, 1836) are from a similar facies, as may be records from the Kimmeridgian of the Jura (THURMANN and ÉTALLON, 1862). The author has collected a specimen from Kimmeridgian marks adjacent to patch reefs at La Rochelle (Charente Maritime).

Other records of *C*. (*Cc*.) *clathratus* consist of small or indeterminate numbers of specimens.

8. INTERPRETATION OF ECOLOGY

The usual occurrence of *C. (Cc.) clathratus* in oolitic and reefal deposits indicates a preference for environments of high energy. The rarity of the species in the Callovian and Kimmeridgian of northern and central Europe (see Section 5) and throughout the M. and U. Jurassic in southern Europe (see Section 6) can thus be viewed as a consequence of the widespread development of low energy, clay-grade facies.

In the U. Jurassic of continental Europe there is a clear correlation between the distribution of coral reef facies and that

of C. (Cc.) clathratus. Although the species occurs in oolites in the Oxfordian of Yorkshire, the occasional presence of corals and a reef-derived fauna may indicate that a substantial reef existed nearby (J. WRIGHT, 1972) and thus an association with this facies for at least part of the life history cannot be ruled out. The rarity of C. (Cc.) clathratus in contemporaneous non-coralliferous oolites in Dorset is evidence that such sediments alone could not induce colonisation of an area by C. (Cc.) clathratus. There are however few grounds for invoking the presence of unexposed reefs to explain the occurrence of C. (Cc.) clathratus in Bathonian oolites at Minchinhampton, although the recent discovery (AGER et al., 1973) of Isastrea and Thamnasteria should be noted. A clearer association with corals, if not with coral reefs, is indicated by occurrences in Normandy and Indre, and the presence in the latter area of pectinids which were at least able to colonise reefs is worth pointing out.

It can be summarised from the foregoing that there is a strong correlation between the occurrence of C. (Cc.) clathratus und coralliferous deposits and that numbers may be highest in the vicinity of coral accumulations of reefal dimensions. It could be that level bottom environments adjacent to coral stands were inhabited when byssal fixation to corals became impossible in the later stages of ontogeny (see Section 9).

Since C. (Cc.) clathratus occurs with a high diversity fauna in, at most, moderate numbers, it was probably an equilibrium species (LEVINTON, 1970).

Other species of *Camptonectes* including the probable ancestor C. (*Cc.*) obscurus (q. v.) show little sign of having competed with C. (*Cc.*) clatbratus.

9. FUNCTIONAL MORPHOLOGY

Since C. (Cc.) clathratus is in most morphological respects identical to C. (Cc.) obscurus, a juvenile byssate followed by an adult reclining mode of life can be similarly inferred. Corals probably constituted the favourite site for byssal attachment and oolites seem to have been preferred for the reclining phase (see Section 8).

10. ORIGINS AND EVOLUTION

The most likely ancestor for C. (Cc.) clathratus is C. (Cc.) obscurus. Since the radially striate ornament characteristic of adult representatives of the former species is present in juveniles of the latter trans-specific evolution could have been largely brought about by the heterochronic retardation of shape development with respect to size. As C. (Cc.) clathratus first occurs within the geographic range of C. (Cc.) obscurus the possibility of sympatric speciation cannot be entirely ruled out. It may be that speciation followed after a few individuals of C. (Cc.) obscurus switched to corals for juvenile byssal attachment, whence disruptive selection and establishment of a stable polymorphism ensued (cf. TAUBER and TAUBER, 1977a, b).

Within C. (Cc.) clathratus there is a marked increase in maximum height from the Bathonian (57.5 mm) to the Oxfordian (140 mm) although the paucity of intermediate records precludes an assessment of wether or not this repre-

sents a gradual trend. Phyletic increase in size combined with a neotenous origin are strong indicators of the prevalence of 'K' selection (GOULD, 1977).

Genus EOPECTEN DOUVILLÉ 1897

Pidgeon 1934, obj.] Velopecten Philippi 1899 [pro Velata Quenstedt 1856, non Velates Montfol 1810] Velatopecten Bollier 1906 [nom. van])	(Synonyms etc.	Velata QUENSTEDT 1856 [non GRIFFITH and
Velopecten Philippi 1899 [pro Velata Quenstedt 1856, non Velates Montfoi 1810] Velatopecten Bollier 1906 [nom. van])		PIDGEON 1934, obj.]
QUENSTEDT 1856, non <i>Velates</i> MONTFOI 1810] <i>Velatopecter</i> , ROLLER 1906 [nom, van])		Velopecten Philippi 1899 [pro Velata
1810] Velatopecten ROLLER 1906 [nom. van.])		QUENSTEDT 1856, non Velates MONTFORT
Velatopecten ROLLIER 1906 [nom van])		1810]
venuopeeren Rollick 1700 [nonn. van.])		Velatopecten ROLLIER 1906 [nom. van.])

Type species. OD; DOUVILLÉ 1897, p. 203; *Hinnites tuberculatus* GOLDFUSS errore pro *Spondylus tuberculosus* GOLDFUSS 1836, p. 93, pl. 105, fig. 2; Aalenian/Bajocian, Swabia.

AMENDED DIAGNOSIS

Medium sized to large, acline, more or less irregular in outline at all stages of growth, some specimens irregularly puckered or with allomorphic ornament; inequivalve, with LV convex and RV flat or concave; left anterior wing large, indistinctly demarcated, right anterior auricle elongate, deep subauricular notch with ctenolium below it; posterior wing rather small; RV with narrow, obtusely triangular cardinal area with deep, narrowly triangular pit below beak corresponding to resilium (same in LV); interior of RV in some specimens with blunt oblique internal ridge originating near resilifer; ornament of striae and costae of varying strengths. L. Jur. (Hettang.)-L. Cret. (Alb.), cosmop.

DISCUSSION

In his diagnosis HERTLEIN (1969: N373) implied that *Eopecten* was cemented early in ontogeny. The present author can find no positive evidence for this. The hinge characteristics of the left valve, unknown to HERTLEIN, are now clear.

The immense variability within *Eopecten*, at least some of which is demonstrably ecophenotypic (see p. 154), has resulted in the designation of a plethora of specific names by typological authors. ROLLIER (1915) alone cites 51 species from the Mesozoic of central W. Europe. Such numbers seem highly improbable in the light of analyses of Recent communities and with the evidently slow rate of species turnover in the Pectinidae. However, it remains difficult to evaluate the extent of ecophenotypic 'noise' in order to delineate true species. An analysis along the lines adopted for *Radulopecten vagans* (see JOHNSON, 1981) might prove instructive although sampling problems would undoubtedly be great. In the lack of such an analysis the author has been forced to adopt a more subjective approach.

Ornamental variation in left valves appears to be distributed around three modal patterns, distinguished as follows:

1. Ornament clearly differentiated into costae and striae in all but very large specimens.

- 150
 - 2. Intercalary costae rapidly gaining the same size as original costae which are themselves of approximately equal size.
 - 3. Intercalary costae rapidly gaining the same size as original costae but two of latter greatly enlarged and bearing tubercles.

Since, at any one locality, there is a marked tendency for only one of the modal patterns (and variants thereof) to be present it may be that the modes themselves represent ecophenotypic variants and that therefore all Jurassic *Eopecten* should be placed in a single species. However, in the lack of a statistical analysis of ontogeny (see above) and of an adaptive reason for such ecophenotypic variation it is preferred herein to treat the three modes as being indicative of three separate species (respectively *E. velatus*, *E. spondyloides* and *E. abjectus*) and to assume that the mutual exclusion at any one locality is due to inter-specific competition.

There is some suggestion, based on the number of costae (see p. 152), that forms grouped around mode 1 may themselves be divisible into two groups. However, until separate contemporaneous lineages can be demonstrated the author prefers to attribute such differences as do exist to phyletic evolution within a single species.

Due to the difficulties in defining Eopecten species at the outset comprehensive descriptions or figures have to be available (in the absence or non-availability of type material) before a taxonomic species can be assigned to one of the above groups. Consequently a number of rather poorly characterised taxonomic species of *Eopecten* have had to be left out of the synonymy lists pending examination of type material. These include: in GOLDFUSS (1836), 'Hinnites' tenuistriatus MUNSTER; in TIETZE (1872), 'H.' sublaevis; in GEMMELLARO and DI BLASI (1874), 'H.' Waageni; in GEMMELLARO (1878), 'H.' ctenopsides, 'H.' aracnoides; in BLASCHKF (1911), 'P.' kotoucensis; in ROLLIER (1915), 'H.' ('Prospondylus') Greppini, 'H.' ('Pr.') ferrugineus, 'H.' ('Pr.') Dollfusi, 'H.' ('Pr.') Argoviensis, 'H.' ('Terquemia') Censoriensis; in PARIS and RICHARDSON (1916), Eopecten doultingensis; in DE GRE-GORIO (1922); 'Pecten' flexocostulatus.

Eopecten velatus (GOLDFUSS 1833) Pl. 5, Figs. 4, 5, 7, 8; text figs. 137–141

Synonymy

- 1833 Pecten velatus sp. nov; GOLDEUSS, p. 45, pl. 90, fig. 2.
- 1833 Pecten tumidus sp. nov; HARTMANN in V. ZIETEN, p. 68, pl. 52, fig. 1.
- 1836 Lima maequistriata sp. nov; GOLDFUSS, p. 81, pl. 114, fig. 10.
- 1836 Spondylus velatus sp. nov; GOLDFUSS, p. 94, pl. 105, fig. 4.
- v[#] 1850 *Hinnites inaequistriatus* sp. nov; D'ORBIGNY, v. 2, p. 22.
- non 1853 *Himnites velatus* (GOLDEUSS); MORRIS and LY-CETT, p. 14, pl. 2, figs. 2, 2a.
 - v 1858 Pecten velatus GOLDFUSS; QUENSTEDT, p. 148, pl. 18, fig. 26, p. 184, pl. 23, fig. 3.
 - 1858 Pecten velatus albus subsp. nov; QUENSTEDT, p. 628, pl. 78, fig. 3.
- non 1862 Pecten velatus (GOLDFUSS); THURMANN and ÉTALLON, p. 266, pl. 37, fig. 12.

- 1862 Hinnites inaequistriatus D'ORBIGNY; THURMANN and ÉTALLON, p. 267, pl. 37, fig. 13.
- 1863 Humites Hautcoeuri sp. nov; DOLLEUS, p. 86, pl. 17, figs. 1, 2.
- non 1864 *Hinnites velatus* (GOLDFUSS); DUMORTIER, p. 70, pl. 4, figs. 1–3.
 - 1869 Hinnites Davaei sp. nov; DUMORTIER, p. 141, pl. 21, figs. 9, 10.
 - 1872 Hinnites inaequistriatus D'ORBIGNY; DE LORIOL et al., p. 391, pl. 23, fig. 2.
 - 1872 Himnites velatus (GOLDFUSS); TIFTZE, p. 108, pl. 3, fig. 2.
 - 1874 *Himnites velatus* (GOLDFUSS); DUMORTIER, p. 308, pl. 62, figs. 3, 4 (non p. 195, pl. 43, fig. 6).
 - 1874 Hunnites thurmanni sp. nov; BRAUNS, p. 343.
 - 1874 *Pecten himutiformis* sp. nov; GEMMELLARO and DI BLASI, p.117, pl. 2, figs. 16–19.
 - 1875 *Pecten binnutiformis* GEMMELLARO and DI BLASI; GEMMELLARO, p. 49.
 - 1876 Hmnites tumidus (HARTMANN); TATF and BLAKE, p. 365.
 - 1878 Himnites astartinus GREPPIN; DE LORIOL, p. 163, pl. 23, fig. 3.
 - 1881a Hinnites inaequistriatus D'ORBIGNY; BOEHM, p. 181, pl. 40, fig. 1.
 - 1881a Humites gigas sp. nov; BOEHM, p. 182, pl. 40, figs. 11, 12.
 - 1881a *Hinnites subtilis* sp. nov; BOEHM, p. 182, pl. 40, fig. 4.
 - 1883 *Hinnites* cf. *astartinus* GREPPIN; BOEHM, p. 619, pl. 68, figs. 7, 8.
- non 1886d Himnites velatus var. irgetus var. nov; DE GREG-ORIO, p. 20, pl. 13, figs. 1–6.
 - 1886 Pleuronectites Aubryi sp. nov; DOUVILLÉ, p. 228, pl. 12, fig. 3.
 - 1903 Velopecten cf. astartinus (GREPPIN); REMES, p. 207, pl. 19, fig. 13.
 - 1903 Velopecten cf. maequistriatus (D'ORBIGNY); REM-ES, p. 207, pl. 20, fig. 1.
 - 1904 Hunnites Bonjouri sp. nov; DE LORIOL, p. 231, pl. 25, figs. 1, 2.
 - 1905 Himnites maequistriatus (D'ORBIGNY); PERON, p. 238.
 - 1915 Hinnites (Prospondylus) Dumortieri sp. nov; ROLLIER, p. 452.
 - 1915 Hunnites (Prospondylus) Quenstedti sp. nov; ROLLIER, p. 453.
 - 1915 Hunnites (Prospondylus) Toarciensis sp. nov; ROLLIER, p. 453.
 - 1915 Hinnites (Prospondylus) ammoniticus sp. nov; ROLLIER, p. 461, pl. 30.
 - 1915 Himntes (Prospondylus) Orbignyi sp. nov; ROL-LIER, p. 464.
 - 1916 Eopecten Dumortieri sp. nov; COSSMANN, pp. 48, 49, text figs. 1, 2.
- non 1926 Velopecten velatus (GOLDFUSS); ARKELL, p. 549, pl. 34, fig. 6.
 - v 1926 Velopecten tumidus (HARTMANN); STAESCHE, p. 117, pl. 4, fig. 7, pl. 5, fig. 4.
 - v 1926 Velopecten velatus (GOLDFUSS); STAESCHE, p. 122, pl. 6, fig. 11.
 - 1928 Velata velata (GOLDFUSS); COX, p. 244.
 - 1933 Velata maequistriata (D'ORBIGNY); DIETRICH, p. 67, pl. 8, fig. 129.
 - 1935 Entolium hauptsmooris sp. nov; KUHN, p. 469, pl. 18, figs. 2a–c.
 - 1935b Velata velata (GOLDFUSS); COX, p. 4, pl. 1, figs. 2, 3.
 - v 1936 Velata Bonjouri (DE LORIOL); DECHASEAUX, p. 70, pl. 8, fig. 14.
 - 1936 Velata Hettangtensis sp. nov; DECHASEAUX, p. 71, pl. 9, fig. 1.

- 1936 Velata tumidus (HARTMANN); KUHN, p. 250, pl. 11, fig. 2.
- 1939 Velata aubryi? (DOUVILLÉ); STEFANINI, p. 186, pl. 20, figs. 10, 11, pl. 21, fig. 1.
- 1952 *Eopecten aubryi* (DOUVILLÉ); COX, p. 52, pl. 6, figs. 3, 4.
- 1965 *Eopecten aubryi* (DOUVILLÉ); COX, p. 52, pl. 6, figs. 3, 4.
- 1965 Eopecten thurmanni (BRAUNS); COX, p. 53, pl. 6, fig. 8.
- 1965
 Eopecten aff. albus (QUENSTEDT); COX, p. 54, pl. 6, fig. 7.

 1971
 Club (Lub) (COUDENSS)
- non 1973 Chlamys (Velata) cfr. velata (GOLDFUSS); LEN-TINI, p. 29, pl. 15, fig. 8.

Neotype of *Pecten velatus* GOLDFUSS, p. 45, pl. 90, fig. 2 herein designated; GPIT 1592/2; Pl. 5, Fig. 7 herein; L. Pliensbachian, Eslingen, S. Germany.

Text fig. 137: Eopecten velatus - European distribution.

Text fig. 138: Eopecten velatus - World distribution (Pliensbachian reconstruction).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Pecten testa obliqua ovato-orbiculari convexa, costis linearibus distantibus (14) minoribus totidem intermediis lineisque pluribus interstitialibus, lineis concentricis subtilissimus confertis, auriculis inaequalibus decussatim lineatis.

E montibus Herciniae et Palatinatus superioris. M.B. M. M. Schief eiförmig-kreisrund, flach-convex, mit 14 linienförmigen Rippen, mit welchen eben so viel etwas niedrigere, abgekürzte, abwechseln. Die Zwischenräume sind mit 2–3 feinen Linien ausgefüllt, und die ganze Fläche mit sehr zarten, gedrängten, concentrisch Linien gegittert. Die ungleichen Ohren haben ähnliche Rippen und Linien, und verlaufen sanft ansteigend gegen die Höhe des Wirbels.

Findet sich bei Quedlinburg, Bayreuth und Amberg."

Distinguished from other species of *Eopecten* by the differentiation of the ornament on the left valve into costae and striae in all but very large specimens (e. g. BM 65900; Pl. 5, Fig. 8).

3. AMENDED DESCRIPTION

Disc shape extremely variable, often irregular (Pl. 5, Fig. 4), generally longer than high (text fig. 139), maximum height 110 mm (OUM J14501). Umbonal angle variable (text fig. 140) usually increasing during ontogeny. Disc flanks low.

Text fig. 140: Eopecten velatus - height/umbonal angle.

Approximately equilateral to markedly inequilateral; inequivalve, right valve usually flat, left valve low to high convexity.

Intersinal distance greater in left valve than right, very large byssal notch with well developed ctenolium.

Auricles poorly demarcated from disc, variable in size, usually large with anterior (text fig. 141) larger than posterior. All auricles meeting hinge line at about 90°. Anterior auricle of left valve and both posterior auricles meeting disc at an acute angle. Anterior auricle of right valve meeting disc at an obtuse angle.

Right valve bearing a large number (< 150) of fine radial striae (Pl. 5, Fig. 5). Ornament of left valve very variable, usually comprising between 15 and 20 (range 5–28) original radial costae (see Section 4) between each pair of which are 4–6 (range 2–8) fine radial striae. Both costae and striae of variable height and often sinuous (Pl. 5, Figs. 4, 7, 8).

Shell thickness variable, left valve usually thicker than right.

4. DISCUSSION

Specimens possessing the diagnostic features of Section 2 which have been described from the L. Jurassic have a minimum of 14 ('Pecten' velatus GOLDFUSS) and a maximum of 24 ('Hinnites' Davaei DUMORTIER) costae on the left valve. Museum specimens of the same age usually possess between 15 and 20 costae. Specimens described from the U. Jurassic may have as few as 5 ('H.' inaequistriatus D'ORBIGNY; DE LORIOL et al.) or as many as 28 ('P.' velatus albus QUENS-TEDT) costae. Moreover the large number of specimens which have been described with costal counts below the L. Jurassic range (e. g. Eopecten thurmanni (BRAUNS); COX with 8, Velopecten cf. inaequistriatus (D'ORBIGNY); REMES with 10, 'P.' hinnitiformis GEMMELLARO and DI BLASI with 10-12, 'H.' cf. astartinus DE LORIOL; BOEHM with 12 and E. aff. albus (QUENSTEDT); Cox with 13) indicates that the mean number of costae may be less in U. compared with L. Jurassic

Text fig. 141: Eopecten velatus - anterior hinge length/height.

samples. Specimens with costal counts within the L. Jurassic range do however exist (e. g. 'H.' astartinus GREPPIN; DE LORIOL with 16, 'H.' cf. astartinus GREPPIN; BOEHM with 17 and 'V.' velatus (GOLDFUSS); STAESCHE with 20) and in the absence of any evidence for a bimodal distribution suggest that the increase in range and possible reduction in mean number of costae is due to phyletic evolution within a single lineage. All forms possessing the diagnostic features of Section 2 are therefore included within the same species (see p. 150). Earlier authors labelled many individual variants of this species with a name thus a large number of synonymous taxonomic species have been generated. It seems futile to set down the peculiarities of each of these. Rather, those which are adequately characterised such that, in the author's opinion, they undoubtedly fall within the range of Section 3, are placed in synonymy and discussion is mainly limited to taxonomic problems. A large number of inadequately described or poorly illustrated secondary references to synonymous species are excluded from the synonymy and are not taken into consideration in subsequent sections. They may be traced in QUENSTEDT (1843, 1852), OPPEL (1853, 1858), COQ-UAND (1860), TRAUTSCHOLD (1861), PHILLIPS (1871), NEUMAYR (1871), TERQUEM and PIETTE (1865), BRAUNS (1871, 1874), TATE and BLAKE (1876), BOEHM (1881), ALTH (1882), Roeder (1882), Simpson (1884), Kilian (1889), Botto-Micca (1893), BEHRENDSEN (1893), MORICKE (1894), GREPPIN (1898), KILIAN and Guébhard (1905), TRAUTH (1909), SIMIONESCU (1898, 1910), Paris and Richardson (1916), Faure-Mar-GUERIT (1920), NEWTON (1921), BLANCHET (1923), ERNST (1923), Roman (1926), Lanquine (1929), Arkell (1930a), Yin (1931), Cox (1935a), Dechaseaux (1936), Parent (1940), RAKUS (1964), BEHMEL and GEYER (1966), URLICHS (1966), NITZOPOULOS (1974) and YAMANI (1975). LENTINI'S (1973) record of 'Chlamys' ('Velata') cfr. velata (GOLDFUSS) appears to be a misidentification of Chlamys (Ch.) textoria.

'Pecten' velatus GOLDFUSS and 'P.' tumidus HARTMANN, both described in 1833, appear to have equal claims to be the senior synonym of the species described in Section 3. However, Cox (1928) has pointed out that 'P.' tumidus HART-MANN is a junior primary homonym of 'P.' tumidus TURTON (1822) and is therefore not available. There is no trace of the type material to 'Pecten' velatus in the GOLDFUSS Collections of the BSPHG and GPIB. A neotype (GPIT 1592/2; Pl. 5, Fig. 7) is therefore herein designated. GOLDFUSS (1836) also applied the name velatus to Spondylus but his figure is clearly of an *Eopecten* so this usage must be rejected as a junior secondary homonym. Cox (1965) raised QUENSTEDT's (1858) subspecies 'P.' velatus albus to specific rank to act as a replacement name for comparable U. Jurassic forms. However, this manoeuvre is rendered superfluous by the present author's inclusion of both the 1833 and 1836 uses of velatus GOLDFUSS within the same hypodigm. Perhaps as a reaction to the evident taxonomic confusion a number of authors have applied the name velatus as a blanket term to all Jurassic Eopecten. Specimens so named in MORRIS and LYCETT (1853), THURMANN and ÉTALLON (1862), DUMORTIER (1964), DE GRE GORIO (1886d) and ARKELL (1926) together with some of the specimens (see Synonymy) so named in DUMORTIER (1874) are clearly representative of E. spondyloides.

The name *inaequistriatus* presents a similar case to that of *velatus*. Cox (1965) rejected *'H.' inaequistriatus* D'ORBIGNY

(1850) as a junior secondary homonym of 'Lima' maequistriata GOLDEUSS (1836) since both species in fact belong to Eopecten. The specific name thurmanni BRAUNS was adopted for forms similar to D'ORBIGNY's species. However, this manoeuvre is rendered unnecessary by the present author's inclusion of D'ORBIGNY's and GOLDEUSS'S species within the same hypodigm. It should be noted that the 1850 authorship of *inaequistriatus* should undoubtedly be credited to D'ORBIGNY rather than to VOLTZ as DF LORIOL et al. (1872), BOEHM (1881), REMES (1903), PERON (1905) and DIETRICH (1933) have assumed. VOLTZ's use of the name exists only in an unavailable manuscript form.

The original authorship of '*H*.' *astartinus* is that of GREP-PIN rather than DF LORIOL, as BOFHM (1883) and REMES (1903) have supposed, while the original authorship of '*P*.' *tumidus* should be attributed to HARTMANN rather than v. ZIETEN as TATE and BLAKE (1876) have assumed.

Although they were not figured ROLLIER'S (1915) species 'H.' ('Prospondylus') Quenstedt1 and 'H.' ('Pr.') Toarciensis can confidently be placed in synonymy because they were founded on specimens described in QUENSTEDT (1858) which are clearly referable to *E. velatus*. The same can be said for 'H.' ('Pr.') Orbignyi and 'H.' ('Pr.') Dumortieri which were based on specimens described in respectively PERON (1905) and DUMORTIER (1864).

5. STRATIGRAPHIC RANGE

The earliest certain records of E. velatus are from the Planorbis zone of the Rhone (DUMORTIFR, 1864) and the Hettangian of Belgium (DECHASFAUX, 1936). A few specimens are known from the Sinemurian of S. Germany (GPIT) and thereafter the species is relatively common at most horizons until the U. Toarcian. Aalenian records are limited to an indeterminate (probably small) number of specimens from the Rhone (DUMORTIER, 1874) and a single specimen from the E. Paris Basin (NM). Bajocian records are similarly limited to indeterminate numbers of specimens from Ethiopia (Douvil-LF, 1916) and Somalia (STEFANINI, 1939), two specimens from N. Italy (BM L61819, L61820) and one from S. England (BM 50552). The species is unknown from the Bathonian but is recorded from the Callovian of NW India (Cox, 1952), E. Africa (Cox, 1965), Portugal (BM LL30871) and N. England (BM 47438). Unequivocal L. Oxfordian records are limited to a small number of specimens from E. Africa (Cox, 1965) but in the U. Oxfordian E. velatus occurs widely and is common in the Yonne (PERON, 1905). Thereafter the species occurs sporadically at most levels until the U. Tithonian (BOEHM, 1883; REMES, 1903).

6. GEOGRAPHIC RANGE

In Europe (text fig. 137) *E. velatus* is a widespread species. The paucity of records from the M. Jurassic of Europe is temporally correlated with the appearance of the species in E. Africa and India (text fig. 138) and probably signifies a migration along the southern shores of Tethys, perhaps as a result of competitive exclusion by the common European species, *E. spondyloides* (see Section 8) and *E. abjectus*.

7. DESCRIPTION OF ECOLOGY

E. velatus is first recorded in any numbers from L. Pliensbachian clays, marls and limestones in S. Germany, where it reaches a maximum height of 63 mm (GPIT). In similar facies in the Margaritatus zone (U. Pliensbachian) of the same area the species attains a height of 64 mm (GPIT). However, in chamosite oolites of the Banbury Ironstone (Spinatum zone) a height of 110 mm (OUM J14501) is reached, although specimens are rare (assoc. fauna p. 16). In the widespread bituminous shale facies of the L. Toarcian E. velatus is similarly rare but in the U. Toarcian marls and limestones of S. Germany the species is relatively common, reaching a maximum height of 41 mm (GPIT). The associated fauna consists mainly of ammonites and belemnites. An isolated specimen from the Toarcian of France (BM 65900) reaches a height of 75 mm while in the M. Jurassic, when E. velatus is rare in Europe, a specimen from the Aalenian of France (NM) attains a height of 101 mm.

In the U. Oxfordian E. velatus is reported to occur commonly in reef limestones in the Yonne (PERON, 1905) where E. spondyloides seems to be rare (assoc. fauna p. 88). It also occurs in similar facies in the Jura, reaching a maximum height of 70 mm (DE LORIOL, 1904) but is rare in the U. Oxfordian of England where E. spondyloides is common. In the Kimmeridgian E. velatus is found sporadically in the faunally depauperate marls and limestones of Switzerland (DE LORIOL, 1878) and S. Germany (STAESCHE, 1926) where it reaches a maximum height of 75 mm (GPIT). In the L. Tithonian E. velatus returns to reef facies in Sicily (GEM-MELLARO and DI BLASI, 1874; GEMMELLARO, 1875) where, however, E. spondyloides is a much more abundant species. In the U. Tithonian E. velatus appears to be common in the Stramberg coral reef (assoc. fauna p. 88) reaching a maximum height of 84 mm (BOEHM, 1883; REMES, 1903).

The great majority of museum specimens are left valves and those from argillaceous horizons such as the U. Toarcian and Kimmeridgian (e. g. OUM J33475, BM unnumbered, GPIT) often show xenomorphic ornament derived from ammonites (Pl. 5, Fig. 4). Apart from those cases discussed above *E. velatus* is an infrequent species.

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that throughout most of its range E. velatus was an inhabitant of argillaceous facies. In some cases the soupy substrates characteristic of such facies seem to have been avoided by means of fixation to the hard shells of ammonites. However, far from all specimens show evidence for such a mode of life. Moreover, E. velatus is conspicuously rare in argillaceous deposits such as occur in the U. Jurassic of the peri-Mediterranean region and the L. Toarcian of N. Europe where ammonites are abundant but benthos is very sparse. Attachment to the living pelagic ammonite therefore seems improbable and it is more likely that some henthic element, probably bivalves, constituted the usual attachment site while dead ammonite shells resting on the sea floor provided an acceptable, if not ideal, alternative where benthos was restricted (e. g. U. Toarcian and Kimmeridgian marls and limestones). Viewed in these terms the abundance of E. velatus in some reefs can be seen as a response to the abundance of hard bodied benthic elements (including bivalves) providing numerous suitable attachment sites. The absence or rarity of the species in other coralliferous horizons (e. g. U. Oxfordian of England, L. Tithonian of Sicily) is correlated with the presence of numerous *E. spondyloides* and is therefore suggestive of a competitive reaction (see Section 6). There seems to be no definite correlation between facies type and the maximum size of *E. velatus*.

Irregularly shaped Recent morphological analogues of *E. velatus* include *Pedum spondyloideum*, a species which lives byssally attached deep within coral heads (YONGE, 1967; WALLER, 1972b), and *Hinnites multirugosus*, a species which cements its right valve to rocks and other bivalves (YONGE, 1951).

9. FUNCTIONAL MORPHOLOGY

The extremely large byssal notch of *E. velatus* implies that byssal fixation could have been maintained throughout ontogeny. The reduced ornamentation of the right valve is adaptive for tight byssal fixation and the general irregularity of shape, occasional presence of undoubted xenomorphic ornament, and restriction of serpulid encrustation to the left valve indicates that the right valve was indeed closely applied to the substrate for long periods. The variability of shell form led many earlier authors to presume a cemented mode of life similar to that of *Hinnites*, to which genus the species was thus assigned (see Synonymy). The paucity of right valves also seems to argue for this hypothesis. However, Cox (1942) in a survey of Eopecten right valves, including those of E. velatus, was unable to find positive evidence of cementation. Moreover, A. SEILACHER (pers. comm., 1977) has observed discontinuities in the pattern of xenomorphic ornament derived from ammonites which imply movement of the shell. Thus tight fixation must have been effected solely by a renewable byssus rather than by a byssus and a permanent cement. The rarity of right valves may be explained by their relative thinness and increased susceptibility to breakage.

Pedum spondyloideum and crevice-dwelling individuals of Himites multirugosus (see Section 8) show ventral migration of the hinge line as an adaptation to living in confined spaces where both valves make contact with the substrate upon gaping. This feature has not been observed in *E. velatus* so it would seem that the species did not occupy such microhabitats. Due to the considerable height attained (84 mm), it is doubtful whether *E. velatus* could have been byssally supported from above in reef facies. In the lack of evidence for crevice/fissure dwelling it would appear that the species must have attached to roughly horizontal upward-facing surfaces.

10. ORIGINS AND EVOLUTION

Since *E. velatus* is first recorded from the Planorbis zone its origins probably lie in the Trias. STAESCHE (1926) considered that *Chlamys dispar* (? = *Ch.* (*Ch.*) valoniensis q. v.) was ancestral but DECHASEAUX (1936) has pointed out that the Trias species '*Pecten*' Morrissii and '*P.*' Albertii are very similar to *Eopecten* and these represent a more plausible root stock.

E. velatus apparently undergoes a phyletic increase in range and reduction in mean number of costae in the passage

from L. to U. Jurassic (see Section 4). Maximum height follows an oscillatory course in the passage from L. Pliensbachian (63 mm) to U. Pliensbachian (110 mm) to Toarcian (75 mm) to Aalenian (101 mm) to Oxfordian (70 mm) to Kimmeridgian (75 mm) to Tithonian (84 mm).

Eopecten spondyloides (ROEMER 1836)

Pl. 5, Figs. 9-14, Pl. 6, Figs. 2, 4, 7, ?Fig. 1; text figs. 142-144

Synonymy

	1822	Ostrea ?; YOUNG and BIRD, pl. 10, fig. 3.
pv*?	1836	Spondylus tuberculosus sp. nov; GOLDFUSS, p. 93
-		pl. 105, figs. 2a, 2b.
	1836	Avicula spondyloides sp. nov; ROEMER, p. 87
		pl. 13, figs. 14a, 14b.
	1850	Avicula jason sp. nov; D'ORBIGNY, v. 1, p. 31.
		(BOULE, 1912, v. 7, p. 161, pl. 2, figs. 17-19).
	1850	Avicula janthe sp. nov; D'ORBIGNY, v. 1, p. 31.
		(BOULE, 1912, v. 7, p. 162, pl. 1, figs. 47, 48).

- 1850 *Hinnites Psyche* sp. nov; D'ORBIGNY, v. 1, p. 314 (BOULE, 1912, v. 7, p. 165).
- v* 1850 Hinnites Pamphilus sp. nov; D'ORBIGNY, v. l, p. 342 (BOULE, 1925, v. 14, p. 161, pl. 20, fig. 14).
- v* 1850 *Hinnites Paniscus* sp. nov; D^{*}ORBIGNY, v. 1, p. 342 (BOULE, 1925, v. 14, p. 161, pl. 20, fig. 13). *Hinnites velatus* (GOLDEUSS): MORRIS and LY-
 - 1853 *Hinnites velatus* (GOLDFUSS); MORRIS and LY-CETT, p. 14, pl. 2, figs. 2, 2a (non GOLDFUSS sp.).
 1853 *Hinnites tegulatus* sp. nov; MORRIS and LYCETT,
 - 1853 *Hinnites tegulatus* sp. nov; MORRIS and LYCETT, p. 14, pl. 2, figs. 3, 3a.
 1855 *Hinnites abjectus* (PHILLIPS); MORRIS and LYCETT,
 - p. 125, pl. 14, fig. 3 (non PHILLIPS sp., non pl. 9, fig. 7).
 - 1858 Pecten tuberculosus Gingensis subsp. nov; QUEN-STEDT, p. 379, pl. 51, fig. 4 (?GOLDFUSS sp.).
- non 1858 Pecten tuberculosus (GOLDFUSS); QUENSTEDT, p. 434, pl. 59, figs. 9, 10.
 - 1859 *Pecten Parisoti* sp. nov; CONTEJEAN, p. 313, pl. 23, figs. 19–21.
 - 1862 *Hinnites velatus* (GOLDFUSS); THURMANN and ÉTALLON, p. 266, pl. 37, fig. 12 (non GOLDFUSS sp.).
- v* 1863 *Hinnites fallax* sp. nov; DOLLFUS, p. 85, pl. 15, fig. 14, pl. 16, figs. 9, 10.
 - 1864 *Hinnites velatus* (GOLDFUSS); DUMORTIER, p. 70, pl. 4, figs. 1–3 (non GOLDFUSS sp.).
 - 1867 *Hinnites Gingensis* (QUENSTEDT); WAAGEN, p. 633, pl. 31, figs. 1a, 1b, 2a, 2b.
 - 1872 *Hinnites fallax* DOLLFUS; DE LORIOL et al., p. 394, pl. 23, fig. 3.
 - 1872 Hinnites Cornueli sp. nov; DE LORIOL in DE LO-RIOL et al., p. 395, pl. 23, fig. 4.
 - 1874 Humites velatus (GOLDFUSS); DUMORTIER, p. 195, pl. 43, fig. 6 (non GOLDFUSS sp.; non p. 308, pl. 62, figs. 3, 4.).
 - 1875 Hinnites Lorioli sp. nov; GEMMELLARO, p. 63, pl. 7, fig. 2.
 - 1886d *Hinnites velatus* var. *irgetus* var. nov; DE GREG-ORIO, p. 20, pl. 13, figs. 1–6 (non GOLDFUSS sp.).
 - 1888 *Hinnites clathratus* sp. nov; SCHLIPPE, p. 136, pl. 2, fig. 2.
 - 1893 Hinnites Cornueli DE LORIOL; DE LORIOL and LAMBERT, p. 145, pl. 10, figs. 10, 11.
 - 1893 Hinnites? spondyloides (ROEMER); DE LORIOL, p. 314, pl. 33, figs. 9, 10.
 - 1893 *Himnites? Lepidus* sp. nov; DE LORIOL, p. 316, pl. 33, figs. 11, 12.
 - 1898 Pecten (Velopecten) Sarthensis sp. nov; E. PHIL-IPPI, p. 602, pl. 19, fig. 1.

- 1905 *Himnites Cornueli* DE LORIOL; PERON, p. 239, pl. 10, fig. 11.
- 1905 Humites cf. spondyloides (ROEMER); PERON, p. 240, pl. 10, fig. 12.
- 1906 Eopecten tegulata (MORRIS and LYCETT); COSS-MANN, p. 2, pl. 1, figs. 3–5.
- 1912 Eopecten Psyche (D'ORBIGNY); DAL PIAZ, p. 247, pl. 2, figs. 1a, 1b.
- 1915 *Hinnites (Prospondylus) Ernii* sp. nov; ROLLIER, pp. 448, 465, pl. 30, figs. 1–4.
- 1915 Hinnites (Prospondylus) oolithicus sp. nov; ROL-LIER, p. 455.
- 1915 Hinnites (Prospondylus) Morrisi sp. nov; ROLLIER, p. 455.
- 1915 Hinnites (Prospondylus) Peroni sp. nov; ROLLIER, p. 460.
- 1915 *Hinnites (Prospondylus) astartmus* sp. nov; ROL-LIER, p. 462.
- 1915 Himnites (Prospondylus) Aeberhardti sp. nov; ROLLIER, p. 447, pl. 29, figs. 3, 4.
- 1923 Pecten (Velata) sp. nov; ERNST, p. 60, pl. 1, fig. 12.
- 1923 Eopecten tuberculosus (GOLDFUSS); LISSAJOUS, p. 157 (? GOLDFUSS sp.).
- 1926 Velopecten Gingensis (QUENSTEDT); STAESCHE, p. 120.
- v 1926 Velopecten Jason (D'ORBIGNY); STAESCHE, p. 121, pl. 5, fig. 3, pl. 6, fig. 12.
- v 1926 Velopecten spondyloides (ROEMER); STAESCHE, p. 124, pl. 6, fig. 10.
- 1926 Velopecten velatus (GOLDFUSS); ARKELL, p. 549, pl. 34, fig. 6 (non GOLDFUSS sp.).
- v* 1931a Velata anglica sp. nov; ARKELL, p. 120, pl. 9, figs. 1, 1a, 2.
 - 1931a Velata wiltoniensis sp. nov; ARKELL, p. 123, pl. 9, figs. 3, 3a.
- non 1936 Velata tuberculosa (GOLDFUSS); DECHASEAUX, p. 68, pl. 9, fig. 2.
 - 1936 Velata Gingensis (QUENSTEDT); DECHASEAUX, p. 68.
 - 1936 Velata Cornueli (DE LORIOL); DECHASEAUX, p. 70.
 - 1936 Velata fallax (DOLLFUS); DECHASEAUX, p. 71.
 - 1948 Velata tegulata (MORRIS and LYCETT); COX and ARKELL, p. 15.
 - 1952 Eopecten tegulatus (MORRIS and LYCETT); COX, p. 29, pl. 3, figs. 5–7.

The type material of *Avicula spondyloides* ROEMER, 1836, p. 87, pl. 13, figs. 14a, 14b is probably in the ROEMER-PELIZAEUS-MUSEUM, Hildesheim, W. Germany. It was derived from the Oxfordian of N. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'A. valva dextra oblique ovato-orbiculari fornicata 20–30 costulata, ala antica obsoleta postica depressa permagna costulata, costulis subnodulosis, sulcis interstitialibus linea ornatis.

Die allein vorliegende rechte Schale ist breit-eirund, fast kreisrund, hoch gewölbt und hinten durch starke Niederbiegung in einen großen Flügel übergehend. Die ganze Oberfläche ist mit 20 bis 30 scharfen, etwas knötigen Rippen bedeckt, in deren Zwischenräumen man eine deutliche Längslinie bemerkt. Der etwas zugespitzte Buckel liegt ziemlich in der Mitte.

Findet sich 12 bis 18 Linien groß im unteren Coral rag bei Heersum und im mittleren Coral Rag bei Hannover. Die Gattungskennzeichen haben noch nicht genau untersucht werden können.'

2. AMENDED DIAGNOSIS

Distingusihed from *E. velatus* by the tendency, on the left valve, for intercalary costae to rapidly gain the same height as originals. Distinguished from *E. abjectus* by the similarity in height of the original costae.

Text fig. 142: *Eopecten spondyloides* – anterior hinge length/height.

3. AMENDED DESCRIPTION

Essentially very similar to *E. velatus* in its often irregular shape (e. g. Pl. 5, Fig. 10) and variable H/L and AH/H (text figs. 143, 142). The main difference lies in the radial ornament of the left valve which consists of about 20 original costae which are continually added to by the intercalation of new costae (rapidly gaining the same height as originals) such that at H: 10 there are between 22 (OUM J34325) and 32 (YM 679) costae, at H: 20 between 30 (OUM J34325) and 48 (YM 679) costae, at H: 30 between 40 (YM 442) and 56 (OUM J34325) costae, at H: 50–60 over 100 costae (ARKELL, 1931a) and so on. The left valve of *E. spondyloides* also exhibits small, closely spaced imbricate lamellae on the costae unlike the left valve of *E. velatus* which bears only growth lines in addition to the costae.

The maximum height of *E. spondyloides* is 140 mm (WAAGEN, 1867).

4. DISCUSSION

As in *E. velatus* the extreme variability in shape and ornament of the species described in Section 3 has resulted in the proliferation of a vast number of specific names, in many cases based on a very small number of specimens. Those species which are, in the author's opinion, adequately characterised (by means of available types, clear illustrations or detailed descriptions) such that there can be no doubt as to their affinity with the species described in Section 3, are placed in synonymy but not discussed, it being deemed of little value to attempt to describe individual variants. Secondary references to these species are only included in the synonymy where there can be no doubt as to their systematic position. Equivocal secondary references may be traced in TERQUEM and JOURDY (1869), DE LORIOL and PELLAT (1875), SIEMIRADZKI (1893), COSSMANN (1900, 1907a, 1914, 1922), PARIS and RICHARDSON (1916), LISSAJOUS (1923), LANQUINE (1929), DE-CHASEAUX (1936), J.-C. FISCHER (1964) and BEHMEL and GEYER (1966).

Although the author has been unable to examine the holotype (M) of 'Avicula' spondyloides ROEMER there can be little doubt from the illustration that it is an example of the species described in Section 3. The holotype (M) of Spondylus tuberculosus GOLDFUSS (BSPHG AS VII 640; Pl. 6, Fig. 1), a species erected in the same year as ROEMER's, shows some resemblance to the species described in Section 3 but its rather coarse ornament and high convexity suggest that it is in fact an example of *Eopecten abjectus*. As the earliest specific name erected for an undoubted example of the species described above, 'A.' spondyloides is herein taken to be the senior synonym.

QUENSTEDT (1858; 'Pecten' tuberculosus Gingensis only) and LISSAJOUS (1923) have used GOLDFUSS' specific name for examples of Eopecten spondyloides; 'Pecten' tuberculosus (GOLDFUSS); QUENSTEDT is representative of E. abjectus while 'Velata' tuberculosa (GOLDFUSS); DECHASEAUX is apparently an example of Ctenostreon.

The frequent misapplication of the name *velatus* GOLDFUSS to *E. spondyloides* (see Synonymy) is discussed under *E. velatus* and MORRIS and LYCETT'S (1853) incorrect use of *'Hinnites' abjectus* (PHILLIPS) is discussed under *E. abjectus*.

'H.' ('Prospondylus') astartinus Rollier should be rejected as a junior secondary homonym of 'H.' astartinus GREPPIN (= E. velatus).

Text fig. 143: Eopecten spondyloides - height/length.

Although unfigured and inadequately described, ROLLIER'S (1915) species 'H.' ('Pr.') oolithicus, 'H.' ('Pr.') Morrisi, 'H.' ('Pr.') Peroni and 'H.' ('Pr.') astartinus are based on specimens figured in respectively MORRIS and LYCETT (1853, 1855), PERON (1905) and DE LORIOL and LAMBERT (1893) which are clearly referable to E. spondyloides.

5. STRATIGRAPHIC RANGE

Two rather poor specimens from the Sinemurian of Belgium (BM LL8605, LL8606) may be early representatives of *E. spondyloides*. The first certain records are however from the L. Toarcian when the species is recorded rarely from the Rhone basin (DUMORTIER, 1874). DE GREGORIO'S (1886d) record from N. Haly may be from a similar horizon. U. Toarcian records are limited to a single specimen from N. W. Germany (ERNST, 1923) but in the Aalenian a number of specimens are known from France and England. E. spondyloides is quite common in the Bajocian and Bathonian but the only records from the Callovian are two specimens from France (MNO 3402B, 3403) and seven from N. W. India (Cox, 1952). The species becomes common again in the Oxfordian but Kimmeridgian reports, although widespread, seem, where abundances are known, to be of very small numbers of specimens, e. g. in France, two from Le Havre (BM LL13478; ENSM L336, Pl. 6, Fig. 2), one from Montbéliard (CONTEJEAN, 1859) and one from La Rochelle (N. J. MORRIS Collection, BM). The species is reported to be common in the L. Tithonian of Sicily (GEMMELLARO, 1875) and is known from the Tithonian of S. Germany (STAESCHE, 1926) and Stramberg in Czechoslovakia (BM LL23888; Pl. 6, Fig. 4).

6. GEOGRAPHIC RANGE

E. spondyloides occurs widely in Europe (text fig. 144). Outside Europe, the only record is from the Callovian of N. W. India (see Section 5). This occurrence, matched with the rarity of the species in the Callovian of Europe, may signify an emigration, perhaps because of the widespread development of unfavourable argillaceous facies (see Section 8).

7. DESCRIPTION OF ECOLOGY

Although fairly widespread in the Aalenian *E. spon-dyloides* is notably rare in the chamositic oolites of the Northampton Sand Ironstone, in which *E. abjectus* frequently occurs. Only three specimens (BM 82394, L25732, unnumbered; the first attaining a height of 63 mm) are known from this horizon.

E. spondyloides is found at most levels in the Bajocian but is most common in the L. Bajocian Lincolnshire Limestone and the Sowerbyi-Banke of S. W. Germany (STAESCHE, 1926), where it reaches a maximum height of 140 mm (WAAGEN, 1867). The sediments in the latter case are condensed marly oolites containing few ammonites but a diverse benthic fauna, mainly consisting of bivalves (including occasional examples of *E. abjectus*).

Many levels were colonised in the Bathonian (Cox and AR-RFLL, 1948) but the species seems to be commonest in the L. Bathonian Minchinhampton Beds, grain supported oolites containing a diverse bivalve and gastropod fauna but very few ammonites (MORRIS and LYCETT, 1851–55). The maximum height attained is 49 mm (BM LL847). Two specimens (BM 65909, 65913) are known from coral containing beds (Couches à Polypiers) in the Bathonian of Normandy.

In the Oxfordian *E. spondyloides* is quite common at most horizons and reaches a maximum height of 116 mm (OUM J8255). The author has collected numerous examples (reaching a maximum height of about 75 mm) from the Coral Rag (Transversarium zone) of Whitewall Corner Quarry near Malton, Yorkshire, where the species occurs in a tough porcellanous limestone crowded with corals (*Thamnasteria, Rhabdophyllia, Thecosmilia* and *Stylina*) and a reef-derived fauna including *Ctenostreon, Lithophaga* and the 'coarse' phenotype of *Chlamys (Ch.) textoria* together with the regular echinoid *Cidaris* (J. WRIGHT, 1972). *E. velatus* is unknown. Similar facies characterise occurrences in the Unterer Korallenoolith (Plicatilis zone) of N. W. Germany (ROEMER, 1836) and the Ringstead Coral Bed (Pseudocordata zone) in Dorset (BM 73077). However, in coral reef facies in the

Text fig. 144: Eopecten spondyloides - European distribution.

U. Oxfordian of the Yonne where *E. velatus* is common, *E. spondyloides* appears to be rare.

In the Kimmeridgian the maximum height of 92 mm (ENSM L336) is attained in clay facies (DOLLFUS, 1863). However, the majority of reports seem to be from coralliferous deposits, e. g. the Tafel Jura (CONTEJEAN, 1859), Haute-Marne (DI LORIOL et al., 1872) and Charente Maritime (N. J. MORRIS Collection, BM).

In reefal limestones in the L. Tithonian of Sicily (fauna p. 88) *E. spondyloides* is reported to be very common, reaching a maximum height of 71 mm, while *E. velatus* appears to be comparatively rare (GEMMELLARO, 1875). In similar facies in the U. Tithonian at Stramberg *E. velatus* seems to be common but only one definite specimen of *E. spondyloides* is known (BM LL23888; H: 46.5). STAFSCHE (1926) records the species from oolites (Brenztaloolith) of the same age in S. Germany which pass laterally into coral/*Diceras* facies (ARKETL, 1956).

E. spondyloides is rare in argillaceous deposits at all times. Only two specimens (BM LL13478, ENSM L336) are known from the Kimmeridge Clay and two from the Oxford Clay (SM J26440, J6441). DUMORTIER (1874) records only rare specimens from L. Toarcian clays in the Rhone. Of these a high proportion are said to bear xenomorphic ornament derived from animonites. The only records from the M. and U. Jurassic of the peri-Mediterranean area, where sedimentation was predominantly pelagic, are from N. Italy (DE GRE-GORIO, 1886d, DAL PIAZ, 1912) where a guyot was probably in existence.

The great majority of museum specimens of *E. spon-dyloides* are left valves.

8. INTERPRETATION OF ECOLOGY

The usual occurrence of E. spondyloides in oolitic and reefal limestones indicates a preference for high energy conditions. Absence of the species from L. Bajocian reefs in the E. Paris Basin (HALLAM, 1975b), presence of a few specimens in Bathonian coralliferous deposits and relative abundance in U. Jurassic coral reefs suggests an evolutionary change in the favoured habitat from level bottom oolites to upstanding reefs. In this connection it should, however, be noted that Spondylopecten species, which are frequently reef-associated, are absent from the L. Bajocian structures and this may indicate that the lack of E. spondyloides is due to some unfavourable feature of these reefs (e. g. dense structure, see p. 89) rather than a preference for contemporaneous oolites. Furthermore, the widespread occurrence of E. spondyloides in the Oxfordian of England and the typically small size and localised distribution of coral reefs suggests that at least some records bear no relation to the existence of reefs. Moreover, the virtual restriction of the species to reef and reef-derived sediments in the U. Jurassic of continental Europe may simply be a result of the general development of unfavourable low energy, argillaceous facies elsewhere. Epifaunal bivalves probably afforded suitable attachment sites in level bottom environments and the abundance of E. spondyloides in reefs could be more a consequence of the abundance of bivalves rather than of a direct relationship with corals. The evolutionary trend suggested above may therefore be more apparent than real.

Although a high proportion of the relatively few examples of *E. spondyloides* from the L. Toarcian of the Rhone show evidence of having been attached to ammonites, the abundance of the species in deposits in which ammonites are rare and the fact that only two other specimens (YM 442 from the Inferior Oolite of Dorset, GPIT from the Bajocian/Bathonian of S. Germany) with ammonite-derived xenomorphic ornament are known, indicates that ammonites did not provide ideal attachment sites but constituted a considerably less favourable alternative to bivalves. By analogy with *E. velatus* it is probable that ammonites were only used for attachment when they had sunk to the sea floor after death.

The inverse relationship between the numbers of *E. spon-dyloides* and *E. velatus* in U. Jurassic reefs is good evidence for competition. The dominent species at any one locality was presumably determined by priority. A similar reaction seems to have occurred between *E. spondyloides* and *E. abjectus* in M. Jurassic oolites.

There is no obvious relationship between size and facies in *E. spondyloides.* Its usual occurrence, in moderate numbers with a high diversity fauna, suggests that it was an equilibrium species (LEVINTON, 1970).

9. FUNCTIONAL MORPHOLOGY

Since in all important morphological respects *E. spon-dyloides* is identical to *E. velatus* the interpretation of functional morphology offered for the latter will serve here.

10. ORIGINS AND EVOLUTION

The most likely ancestor for *E. spondyloides* is *E. velatus*. A large (H: 75) specimen of the latter (Pl. 5, Fig. 8) exhibits, in late ontogeny, ornament which closely resembles that of the early ontogeny of *E. spondyloides*. Thus trans-specific evolution could have occurred by the relatively 'simple' process (GOULD, 1977) of the acceleration (recapitulation) of the development of ornament with respect to size.

There are no directional changes in morphology within *E. spondyloides*. Maximum height oscillates from 63 mm (Aalenian) to 140 mm (Bajocian) to 49 mm (Bathonian) to 55 mm (Callovian, Macrocephalus zone; Cox, 1952) to 116 mm (Oxfordian) to 92 mm (Kimmeridgian) to 71 mm (Tithonian). The Callovian value is derived from a rather small sample so it is likely that the maximum height recorded in the stage will be increased on further collecting.

Eopecten abjectus (PHILLIPS 1829) Pl. 6, Figs. 3, 5, 6, 8, 9, ?Fig. 1; text fig. 145

Synonymy

1829	Pecten abjectus sp. nov; PHILLIPS, pl. 9, fig. 37.
1835	Pecten abjectus PHILLIPS; PHILLIPS, pl. 9, fig. 37.
pv*? 1836	Spondylus tuberculosus sp. nov; GOLDFUSS, p. 93
-	pl. 105, figs. 2a, 2b.
1855	Hinnites abjectus (PHILLIPS); MORRIS and LYCETT
	p. 125, pl. 9, fig. 7 (non pł. 14, fig. 3).
non 1858	Pecten tuberculosus Gingensis subsp. nov; QUEN
	STEDT, p. 379, pl. 51, fig. 4 (?GOLDFUSS sp.).

- v 1858 Pecten tuberculosus (GOLDFUSS); QUENSTEDT, p. 434, pl. 59, figs. 9, 10.
 - 1863 *Hinnites gradus* sp. nov; BEAN in LYCETT, p. 35, pl. 33, figs. 10, 10a.
 - 1883 Hinnites abjectus (PHILLIPS); DE LORIOL and SCHARDT, p. 72, pl. 10, figs. 12, 13.
 - 1910 Eopecten gradus (BEAN); LISSAJOUS, p. 351.
 - 1910 Eopecten abjectus (PHILLIPS); LISSAJOUS, p. 351, pl. 9, fig. 14.
- 1916 *Eopecten abjectus* (PHILLIPS); PARIS and RICHARD-SON, p. 530.
- 1923 Eopecten Gradus (BEAN); LISSAJOUS, p. 157.
- non 1923 Eopecten tuberculosus (GOLDFUSS); LISSAJOUS, p. 157 (?GOLDFUSS sp.).
 - 1926 Velopecten abjectus (PHILLIPS); STAESCHE, p. 119.
 - 1936 Velata abjecta (PHILLIPS); DECHASEAUX, p. 68.
 - 1936 Velata gradus (BEAN); DECHASEAUX, p. 69.
 - 1948 Velata gradus (BEAN); COX and ARKELL, p. 15.

No trace of the type material of *Pecten abjectus* PHILLIPS 1829, pl. 9, fig. 37 has yet been found despite considerable searching in e. g. the PHILLIPS Collections at OUM and YM. The figured specimen was said by PHILLIPS to be from the Yorkshire Gt. Oolite (Bathonian). This seems unlikely in view of the non-marine facies; a Bajocian or Aalenian age is more probable.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

None given.

2. DIAGNOSIS

Distinguished from *E. spondyloides* by the tendency for two median costae to be considerably larger and bear tubercles. Distinguished from *E. velatus* by the tendency for intercalary costae to rapidly gain the same height as original costae.

3. DESCRIPTION

Essentially very similar to *E. spondyloides* apart from the diagnostic features. The number of costae on the left valve is

however usually much smaller (e. g. 40 at H: 53.5, OUM J2291) at equivalent size, and convexity, although very variable, is usually much higher (C_L : 21.5 at H: 58, BM 70686). The maximum height is 127.5 mm (GPIT).

4. DISCUSSION

PHILLIPS' (1829) figure of 'Pecten' abjectus in the first edition of Geology of Yorkshire is a poor illustration of a coarsely ornamented Eopecten. There is little sign of the larger tubercle-bearing costae diagnostic of the species described in Section 3. The figure in the second edition (1835), while undoubtedly of the same specimen, is considerably clearer and yields a costal count of 36 at H: 37. This is a reasonable value for the species described in Section 3 and well below the lower limit of variation in E. spondyloides, the only species with which there is any possibility of confusion. The original specimen seems to have been lost (see above) but in the light of the above evidence it can be assumed to have been a variant of the species described in Section 3 with relatively undeveloped median costae. The majority of subsequent usage of Phillips' specific name (see Synonymy) has been for representatives of the species described in Section 3 thus there would be good grounds for designating as neotype a typical example of this species.

One of the figures (pl. 14, fig. 3) of 'H.' *abjectus* in MOR-RIS and LYCETT (1855) depicts a specimen with the more numerous and regular costae characteristic of *E. spondyloides*.

LISSAJOUS (1910) states that the specific name gradus BEAN dates from the latter's paper in Ann. Mag. Nat. Hist. (1839). However, there is no reference to the species in this paper and the earliest reference to it would therefore appear to be in LYCETT (1863), where a specimen which clearly belongs to *E. abjectus*, is described and figured as '*P.*' gradus BEAN.

Spondylus' tuberculosus GOLDFUSS and secondary usages of this specific name are discussed under *E. spondyloides*.

Inadequately characterised secondary references to synonymous species are excluded from the synonymy because of the possibility of misapplication to *E. spondyloides*.

Text fig. 145: Eopecten abjectus - European distribution.

They may be traced in Oppel (1858), ROTHPLETZ (1886), SCHLIPPE (1888), KILIAN and GUÉBHARD (1905), HENNIG (1924), LANQUINE (1929), PARENT (1940), CHANNON (1950) and J.-C. FISCHER (1969).

5. STRATIGRAPHIC RANGE

A single specimen from the U. Pliensbachian of Yorkshire (BM 47353; Pl. 6, Fig. 9) is the earliest record of *E. abjectus*. Thereafter the species is unknown until the Aalenian when it becomes locally quite common, continuing thus until the U. Bajocian. Unequivocal Bathonian records (Morris and LYCFTT, 1855; DE LORIOL and SCHARDT, 1883; LISSAJOUS, 1923; STAESCHE, 1926; DECHASEAUX, 1936; COX and ArkELL, 1948) are fairly widespread in Europe but the species does not appear to be common anywhere. Callovian records are limited to a single specimen from the Macrocephalus zone of Scarborough (LYCETT, 1863) and unfigured and therefore questionable specimens (see Section 4) from the Maritime Alps (KILIAN and GUÉBHARD, 1905). MORRIS and LYCETT's (1855) record from the 'Coralline Oolite of Malton' (Oxfordian) is unsupported by a figure of a specimen from this horizon.

6. GEOGRAPHIC RANGE

The distribution of *E. abjectus* in Europe (text fig. 145) is largely dependent on the occurrence of the appropriate sedimentary lacies (see Section 8). The only records from outside Europe are a single specimen from the U. Bathonian of N. W. India (BM L75269) and unfigured and therefore questionable specimens (see Section 4) from the 'Lower Dogger' of Tanzania (HENNIG, 1924).

7. DESCRIPTION OF ECOLOGY

E. abjectus first occurs commonly in the Northampton Sand Ironstone (Opalinum zone), a condensed chamosite oolite containing few examples of *E. spondyloides* but an otherwise abundant and diverse fauna. The maximum height attained is 95 mm (BM 82385). *E. abjectus* is markedly less common in the Sowerbyi-Banke, a somewhat similar condensed, ferruginous, marly oolite containing numerous examples of *E. spondyloides*, in the L. Bajocian of S. W. Germany. Maximum height (127.5 mm, GPIT) is however considerably greater.

LISSAJOUS (1923) reports the species to be common in ferruginous oolites of the Parkinsoni zone (U. Bajocian) in the Mâconnais. *E. spondyloides* appears only to occur in the Toarcian and Bathonian in the same area. In the U. Bajocian of Swabia *E. abjectus* reaches a maximum height of 75 mm (GPIT).

It is clear from the foregoing that condensed ferruginous oolites constituted the most favourable substrate for *E. abjectus*. The species is not known to be common outside this facies. PARIS and RICHARDSON (1916) report the species to be common in the Pea Grit (Murchisonae zone), a pisomicrite in the Cotswolds, but this is not reflected in museum collections or supported by the present author's field observations.

8. INTERPRETATION OF ECOLOGY

The usual occurrence of *E. abjectus*, in condensed ferruginous oolites, indicates a preference for high energy conditions with minimal terrigenous input. The inverse correlation in numbers of *E. abjectus* and *E. spondyloides* in such facies is strongly suggestive of competition, with dominance at any one locality being presumably determined by priority.

The characteristic field occurrence of *E. abjectus*, in moderate numbers with a high diversity fauna, suggests that it was an equilibrium species (LEVINTON, 1970).

9. FUNCTIONAL MORPHOLOGY

Since the species are in all important respects identical, the interpretation of functional morphology presented for *E. velatus* is of equal relevance to *E. abjectus*. It is extremely doubtful whether the coarser ornament of the latter conferred any useful additional strength and stiffness on the shell which, being thick, must already have been robust enough to cope with most eventualities. The coarser ornament is more probably a non-functional by-product of neoteny in the origin of the species (see Section 10).

No specimens of *E. abjectus* bearing the xenomorphic ornament of ammonites have been discovered. It therefore seems likely that benthos provided the sole source of sites for byssal attachment.

10. ORIGIN AND EVOLUTION

On the basis of morphology the most likely ancestor for *E. abjectus* is *E. spondyloides*. However, validation of this hypothesis of derivation must await the discovery of undoubted specimens of *E. spondyloides* from the L. Lias (see Section 5). Since the relatively coarse ornament of *E. abjectus* resembles the juvenile ornament of *E. spondyloides* it is possible that trans-specific evolution involved the retardation of ornamental development with respect to size (neoteny). There is however no basis of allometry in *E. spondyloides* to allow derivation of the large tuberculate median costae in *E. abjectus* by heterochrony. Speciation therefore probably involved changes in the structural as well as the regulatory genome.

There appear to be no phyletic changes in morphology within *E. abjectus*. Maximum height shows no directional change in the passage from Aalenian (95 mm) to L. Bajocian (127.5 mm) to 75 mm (U. Bajocian).

A possibility of neoteny in the origin of *E. abjectus* together with the subsequent highly developed stenotopy is indicative of the prevalence of 'K' selection (GOULD, 1977).

The Bathonian decline of *E. abjectus* was probably the result of the diminution in areal importance of ferruginous oolite deposits. The subsequent extinction of the species in the Callovian was probably due to the widespread development of unfavourable (low energy/high turbidity) argillaceous facies in Europe.

Genus CHLAMYS Roding 1798 (non Koch 1801)

Type species. SD; HERRMANNSEN 1847, p. 231; *Pecten islandicus* MULLER 1776, p. 248; Recent, circumboreal.

AMENDED DIAGNOSIS

'Higher than long or rounded, commonly somewhat oblique, LV usually more convex but in some species valves nearly equally convex; auricles clearly delimited, usually large; byssal notch large; ctenolium usually present; sculpture of radial (usually stronger) and concentric elements, with scalelike spines commonly developed at their junctions, especially on LV but some shells nearly smooth; interspaces of many forms with intercalaries in adult; margin usually scalloped; cardinal crura variable in number and size. Trias. – Rec., cosmop.' (HERTLEIN, 1969: N355).

DISCUSSION

The above diagnosis includes such a diversity of forms that it seems impractical to employ it at the generic level. However, the present author is not in a position to give a revised generic diagnosis of *Chlamys* since most species are post-Jurassic.

Subgenus CHLAMYS s. s.

(Synonyms etc. Clamys LEACH, 1815 [nom. null.] Chalmys Dollfus and DAUTZENBERG, 1886 [nom. null.] Actinochlamys Rovereto, 1898 Myochlamys von Ihering, 1907 [obj.] Chlamydina Cossmann, 1907 [obj.] Zygochlamys von Ihering, 1907 Belchlamys IreDale, 1929 Mimachlamys IreDale, 1929 Scaeochlamys IreDale, 1929 Veprichlamys IreDale, 1929 Coralichlamys IreDale, 1929

AMENDED DIAGNOSIS

'Usually higher than long, anterior auricle longer than posterior one; sculpture of numerous, generally grooved or striated and spinose, radial ribs; inner margin commonly with rounded, grooved, weak riblets; cardinal crura weak or nearly obsolete. Trias. – Rec., cosmop.' (HERTLEIN, 1969: N355).

DISCUSSION

Forms referable herein to *Ch. (Chlamys)* are divisible into 3 groups on the following basis: –

- 1. Plicae smooth (= Ch. (Ch.) valoniensis).
- 2. Plicae bearing widely spaced spines up to 5 mm in length (= Ch. (Ch.) pollux).
- 3. Plicae bearing variably spaced imbricate lamellae (= *Ch. (Ch.) textoria*).

Groups 1 and 2 are almost certainly directly related and can be distinguished from Group 3 at least as far back as the Trias. They may therefore be worthy of a subgeneric distinction from Group 3. However, in view of the uncertainty over the bounds of the genus *Chlamys* (see above) this seems an inopportune moment to risk further confusion of the taxonomy by erecting new subgenera.

Forms referable to Group 3 are to all intents and purposes continuously variable in the number of plicae, spacing of the comarginal lamellae and umbonal angle (Pl. 6, Figs. 10-12, Pl. 7, Figs. 1-23, Pl. 8, Figs. 1-3, 5-20). In all other respects they are relatively invariant. However variation, at least in the number of plicae, is not normally distributed. Plical frequency histograms standardised for size (in order to eliminate the effect of ontogenetic increase in the number of plicae) show at L: 20 and L: 40 (text fig. 146) a pronounced skew to the right together with the development of secondary modes, while at L: 60 (text fig. 146) there is marked bimodality. At all sizes there are a few specimens whose plical frequencies are outside the range of continuous variation. This is hardly the pattern of variation expected of a single species but the following discussion is intended to show that it need not necessarily imply that more are present. In any case the height of the inter-modal troughs would make for difficulty in defining the boundaries between constituent species.

If a species is 'environmentally variable' (developmentally flexible) character/frequency plots for early stages in ontogeny would be expected to lack prominent modes since at this stage the organisms concerned cannot have 'experienced' the environment and started to develop the appropriate morphology (JOHNSON, 1981). For any given environment a single, prominent mode will emerge as development proceeds. However, if more than one environment is involved a whole variety of character/frequency distributions is possible for later stages in ontogeny (such as are represented in text fig. 146): differences in the extent of representation of particular environments, resulting from uneven sampling, will determine the shape of the character/frequency distribution.

In the group under discussion there is a considerable correlation between plical frequency in the later stages of ontogeny and the environment occupied. Forms within the range 17-26 plicae are usually derived from reefal or peri-reefal deposits while those within the range 27-36 plicae are most frequent in non-reef, shallow water facies and those with more than 36 plicae are usually derived from argillaceous sediments (see pp. 175-177). Due to abrasion, it is often difficult to count the number of plicae in the umbonal region (earliest ontogenetic stages). There does seem in fact to be a mode at about 22 plicae (range: 17-30) but there is nevertheless little sign of the multiple modes evident in counts from later ontogenetic stages. There are thus reasonable grounds for considering that differences in the number of plicae late in ontogeny are a reflection of ecophenotypic variation within a single species. There is still a need for further detailed work on early ontogenetic variation in order to substantiate the 'single species' hypothesis. An analysis of ontogenetic changes in variation along the lines employed for Radulopecten vagans (JOHNSON, 1981) would provide a test for ecophenotypic variation.

In conclusion, the curious patterns of variation shown by text fig. 146 are herein considered to be an artefact of the museum collections studied. In these, specimens derived from reefal and peri-reefal facies are much the most abundant

Text fig. 146: *Chlamys (Ch.) textoria* – frequency distributions for numbers of plicae at lengths of 20, 40 and 60 mm.

and thus contribute to the right-skew at L: 20 and L: 40. Specimens from argillaceous facies are poorly represented and usually small, thus resulting in the discontinuous distribution at high plical counts, which becomes especially marked at L: 60. Specimens from non-reef shallow water facies are poorly represented but often large, thus resulting in the paucity of specimens with intermediate plical counts at L: 20 and L: 40 but the relative abundance at L: 60. Variation in the number of plicae at a particular size could result from flexibility in the absolute rate of either size increase or of addition to the number of plicae. Some evidence for retardation of size increase (stunting) is derived from the fact that forms with more than 36 plicae rarely exceed 50 mm in height. The generally closer spacing of the imbricate lamellae in such forms is also indicative of size retardation, provided that the temporal periodicity of secretion is the same as in larger specimens. Likewise, the generally smaller H/UA ratio of specimens with numerous plicae is indicative of retarded size development, provided that H and UA are partially dissociated. However, the existence of specimens which are both large and bear numerous plicae (e. g. Pl. 8, Fig. 19) should be noted. Moreover, there is by no means a linear relationship between the number of plicae and spacing of the imbricate lamellae, morphs of intermediate plical count exhibiting both close and widely spaced lamellae (e. g. Pl. 8, Figs. 9, 12). Similarly, in a plot of H/UA (text fig. 147) morphs with between 27 and 36 plicae at a standard size (L: 40) do not occupy a clearly defined zone between those with more and less plicae.

The existence of forms with low plical counts, even at very large size (e. g. Pl. 6, Fig. 12), together with the fact that much of the intercalation leading to high plical counts takes place quite early in ontogeny (e. g. Pl. 8, Fig. 16) suggests that changes in the absolute rate of addition to the number of plicae have played at least as important a role as stunting in promoting the observed pattern of ecophenotypic variation. Such changes, unlike stunting, imply some adaptive value for the phenotypes adopted in each environment. At present only a few suggestions (see p. 178) can be offered as to their significance and the topic is clearly ripe for further research.

Text fig. 147: *Chlamys (Ch.) textoria* – height/umbonal angle for forms with either 17–26, 27–36 or 37–46 plicae at a length of 40 mm.

The decision to incorporate the great range of variation of Group 3 within the bounds of a single species is not rendered suspect by the lack of a Recent analogue. In one of the few cases where the variation of a Recent pectinid has been assessed in a number of ecological settings, BEU(1966) reports that *Ch. dieffenbachi* adopts an ecophenotype consisting of numerous spine-bearing plicae when enclosed within a sponge (the usual habitat) while an ecophenotype consisting of relatively few, smooth plicae is adopted in the unenclosed condition. The total range of variation in the later stages of ontogeny is comparable to that in Group 3 and the early stages of ontogeny are similarly relatively invariant.

Chlamys (Chlamys) textoria (SCHLOTHEIM 1820)

Pl. 6, Figs. 10–12, Pl. 7, Figs. 1–21, Pl. 8, Figs. 1–3, 5–20, ?Fig. 4; text figs. 146–157

Synonymy

- v* 1820 Pectinites textorius sp. nov; SCHLOTHEIM, p. 229.
 1822 Pecten varius LINNAEUS; YOUNG and BIRD, p. 223, pl. 9, fig. 9 (non LINNAEUS sp.).
- v[°] 1826a *Pecten vimineus* sp. nov; J. DE C. SOWERBY, p. 81, pl. 543, figs. 1, 2.
 - 1828 Pecten elegans sp. nov; YOUNG and BIRD, p. 234, pl. 9, fig. 8.
 - 1829 Pecten virguliferus sp. nov; PHILLIPS, pl. 11, fig. 20.
- ? 1833 Pecten textilis sp. nov; MUNSTER in GOLDFUSS, p. 43, pl. 89, figs. 3a-d.
- v 1833 Pecten vimineus J. DE C. SOWERBY; GOLDFUSS, p. 44, pl. 89, figs. 7a, 7b.
- v 1833 Pecten textorius (SCHLOTHEIM); GOLDFUSS, p. 45, pl. 89, figs. 9a–d.
- ?v* 1833 Pecten texturatus sp. nov; MUNSTER in GOLDFUSS, p. 45, pl. 90, fig. 1.
- v* 1833 *Pecten ambiguus* sp. nov; MUNSTER in GOLDFUSS, p. 46, pl. 90, figs. 5a, 5b.
- v 1833 Pecten articulatus (SCHLOTHEIM); GOLDFUSS, p. 47, pl. 90, fig. 10 (non SCHLOTHEIM sp.).
- v^{*} 1833 Pecten subtextorius sp. nov; MUNSTER in GOLD-FUSS, p. 48, pl. 90, figs. 11a, 11b.
 - 1836 Pecten subimbricatus sp. nov; ROEMER, p. 212, pl. 13, fig. 6.
 - 1837 Pecten textorius var. orbicularıs var. nov; KOCH and DUNKER, p. 20, pl. 1, fig. 5.
- (?) 1839 Pecten dextilis MUNSTER; ROEMER, p. 28, pl. 28, figs. 24a–c.
 - 1839 Pecten vinineus J. DE C. SOWERBY; ROEMER, p. 29.
- v*p 1850 Pecten Palaemon sp. nov; D'ORBIGNY, v. 1, p. 238
 (BOULE, 1908, v. 3, p. 37, pl. 18, fig. 5, non fig. 6).
 v* 1850 Pecten Phillis sp. nov; D'ORBIGNY, v. 1, p. 257.
 - ⁴⁵ 1850 Pecten Phillis sp. nov; D'ORBIGNY, v. 1, p. 257.
 v 1850 Pecten articulatus (SCHLOTHEIM); D'ORBIGNY, v. 1, p. 285 (non SCHLOTHEIM sp.).
- v* 1850 Pecten Luciensis sp. nov; D'ORBIGNY, v. 1, p. 314 (BOULE, 1912, v. 7, p. 91, pl. 2, fig. 28).
- v* 1850 Pecten Camillus sp. nov; D'ORBIGNY, v. 1, p. 342 (BOULE, 1925, v. 14, p. 160, pl. 20, figs. 7–10).
- v 1850 Pecten vimineus J. DE C. SOWERBY; D'ORBIGNY, v. 1, p. 373.
- v* 1850 Pecten Opis sp. nov; D'ORBIGNY, v. 1, p. 374 (BOULE, 1928, v. 17, p. 49, pl. 6, figs. 10, 11).
- v[≠] 1850 Pecten subarticulatus sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 171, pl. 19, figs. 13, 14).
- v^{*} 1850 *Pecten Nisus* sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 172, pl. 20, fig. 2).
 - 1850 Pecten Nothus sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 173, pl. 20, fig. 3).
- v^{*} 1850 *Pecten Niso* sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 173, pl. 20, fig. 4).
 - 1851 Pecten ambiguus MUNSTER; SCHAFHAUTL, p. 410.
 1852 Pecten textorius (SCHLOTHEIM); VERNEUIL and COLLOMB, p. 112.
 - 1853 *Pecten textorius* (SCHLOTHEIM); CHAPUIS and DE-WALQUE, p. 209, pl. 23, fig. 2.
 - 1853 *Pecten articulatus* (SCHLOTHEIM); CHAPUIS and DEWALQUE, p. 212, pl. 29, fig. 3 (non SCHLOT-HEIM sp.).
 - 1853 *Pecten articulatus* (SCHLOTHEIM); MORRIS and LYCETT, p. 32, pl. 33, fig. 12 (non SCHLOTHEIM sp.).
- v* 1855 Pecten icaunensis sp. nov; COTTEAU, p. 110.

v 1855

	p. m.
1855	Pecten texturatus MUNSTER; TERQUEM, p. 322.
2 1855	Pecten dispar sp. nov: TEROUEM, p. 323, pl. 23.
. 1055	fig 6
\$ 1050	Destau Trianul an anna Opput a 103
? 1858	Pecten Irigeri sp. nov; OPPEL, p. 103.
1858	Pecten Dewalquet sp. nov; OPPEL, p. 420.
ov 1858	Pecten textorius (SCHLOTHEIM); QUENSTEDT,
	p. 78, pl. 9, fig. 12, p. 500, pl. 67, fig. 5, p. 794,
	pl. 98, fig. 3.
1959	Pactan tartorius a var pou: OHENSTEDT p 147
1030	-1 10 fig 17
1050	pl. 18, fig. 17.
1858	Pecten textorius torulosi subsp. nov; QUENSTEDT,
	p. 311, pl. 42, fig. 10.
v* 1858	Pecten textorius albus subsp. nov; QUENSTEDT,
	p. 627, pl. 77, figs. 25, 26.
v 1858	Pecten dentatus 1 DE C. SOWERBY: OUENSTEDT.
1000	p. 753 pl. 92 fig. 3 (pop I DE C. SOWEREN Sp.)
	p. 755, pl. 72, lig. 5 (lion j. tr. 6, 56 weiker sp.).
v 1858	Pecten articulatus (SCHLOTHEIM); QUENSTEDT,
	p. 754, pl. 92, fig. 11 (non SCHLOTHEIM sp.).
1858	Pecten subtextorius MUNSTER; QUENSTEDT,
	p. 754, pl. 92, fig. 4.
* 1858	Pecter subtertorius Schnaitheimensis suben now
1000	OUDIETEDT = 754 -1 02 fig 7
1050	QUENSTEDT, p. 754, pt. 92, fig. 7.
1859	Pecten Benedicti sp. nov; CONTEJEAN, p. 313,
	pl. 23, figs. 13–15.
1859	Pecten Billott sp. nov; CONTEJEAN, p. 315, pl. 23,
	figs. 22–24.
1860	Pecten virguliferus PHILLIPS: COOLIAND, p. 68
1000	Dura initial and the company of the
1860	Pecten viminens J. DE C. SOWERBY; COQUAND,
	p. 73.
1860	Pecten subarticulatus D'ORBIGNY; COQUAND,
	p. 79.
1860	Pecten Nisus D'Orbigny: COOLLAND, p. 79
1860	Pecter Niso D'OPBIENY: CODUAND p. 79
1020	Pactay Billoti CONTRITANI CONTAND - 01
1860	Peter Buton CONTEJEAN; COQUAND, p. 91.
1861	Pecten subtextorius MUNSTER; IRAUTSCHOLD,
	p. 446.
1861	Pecten subreticulatus sp. nov; STOLICZKA, p. 196,
	pl. 6, figs. 1, 2.
1861	Pecten Rollei sp. nov; STOLICZKA, p. 197, pl. 6.
	figs 5.6
1961	Dester gentrallus on DOM STOLICIES D 107
1001	Telen verhanns sp. nov, stoliczkk, p. 177,
	pl. 6, figs. 3, 4.
1861	Pecten palosus sp. nov; STOLICZKA, p. 197, pl. 6,
	tig. 8.
1862	Pecten articulatus (SCHLOTHEIM); THURMANN and
	ÉTALLON, p. 255, pl. 36, fig. 2 (non SCHLOTHEIM
	SD.).
1862	Pecten Schnaitheimensis OHENSTEDT. THURMANIN
1002	and ÉTALLON & 355 al 24 fig 2
	and BTALLON, p. 200, pl. 00, fig. 5.
1862	Pecten subtextorius MUNSTER; THURMANN and
	ETALLON, p. 256, pl. 36, fig. 4.
1862	Pecten vimineus J. DE C. SOWERBY; THURMANN
	and ÉTALLON, p. 256, pl. 36, fig. 5.
1862	Pecten Hermanciae sp. nov: ÉTALLON in THUR
1002	MANN and ÉTALLON = 256 al 26 fig 6
	MAININ and ETALLON, p. 230, pl. 36, fig. 6.
1863	Pecten textorius (SCHLOTHEIM); SCHLÖNBACH,
	p. 543.
1863	Pecten splendens sp. nov; DOLLFUS, p. 78, pl. 14.
	figs. 7–9
186.1	Pacton secure on now Discourse - 60 -1 0
1904	for 0.11
	11gs. 9–11.
1864	Pecten vimineus J. DE C. SOWERBY; V. SEEBACH,
	p. 97.
1075	Pecten canaliculatus sp. nov; TERQUEM and
1865	PIETTE, p. 102, pl. 11, figs. 30-32.
1865	· · · · · · · · · · · · · · · · · · ·
1865	
1865	Pecten dispar TERQUEM; TERQUEM and PIETTE,
(?) 1865	Pecten dispar TERQUEM; TERQUEM and PIETTE, p. 103.
1865 (?) 1865 1866	Pecten dispar TERQUEM; TERQUEM and PIETTE, p. 103. Pecten Sismondae sp. nov; CAPELLINI, p. 481.

Pecten desmoulinsianus sp. nov; COTTEAU,

867	Pecten	textorius	(SCHLOTHEIM);	DUMORTIER,
	pp. 71,	125, pl. 13,	fig. 1.	

1

1868 Pecten textorius (SCHLOTHFIM); JAUBERT, p. 235.

- 1869 *Pecten textorus* (SCHLOTHEIM); DUMORTIER, p. 139, pl. 22, fig. 2, p. 303, pl. 39, figs. 1, 2.
- 1869 Pecten Rollei STOLICZKA; DUMORTIER, p. 139, pl. 22, fig. 1.
- 1869 Pecten Fortunatus sp. nov; DUMORTIER, p. 140, pl. 22, fig. 4.
- 1869 Pecten semispinatus sp. nov; TERQUEM and JOURDY, p. 130, pl. 13, figs. 21, 22.
- 1872 Pecten Nisus D'ORBIGNY; DE LORIOL et al., p. 385, pl. 22, fig. 14.
- 1874 Pecten Ponzii sp. nov; GEMMELLARO, p. 107, pl. 13, fig. 5.
- 1874 Pecten anastomoplicus sp. nov; GEMMELLARO and DI BLASI, p. 99, pl. 1, figs. 4–7.
- 1874 Pecten erctensis sp. nov; GEMMELLARO and DI BLASI, p. 102, pl. 1, figs. 8–10.
- 1874 Pecten textorus (SCHLOTHEIM); DUMORTIER, pp. 193, 310, pl. 44, fig. 12.
- 1875 Pecten vimineus J. DF C. SOWERBY; DE LORIOL and PELEAT, p. 204, pl. 23, figs. 3-5.
- v⁴ 1875 Pecten Quenstedti sp. nov; BLAKF, p. 231.
 - 1878 Pecten (Chlamys) Veneris sp. nov; GEMMELLARO and DI BLASI in GEMMELLARO, p. 396, pl. 30, figs. 11, 12.
 - 1878 Pecten subtextorus MUNSTER; DE LORIOL, p. 161, pl. 23, figs. 1, 2.
 - ? 1878 Pecten Janiformis sp. nov; LUNDGREN, p. 39, pl. 1, figs. 58, 59.
 - 1879 Pecten cf. textorius (SCHLOTHEIM); NEUMAYR, p. 14.
 - 1879 Pecten Lotharingicus sp. nov; BRANCO, p. 111, pl. 8, fig. 9.
 - 1881 Pecten subreticulatus STOLICZKA; J. MENEGHINI, p. 162, pl. 28, figs. 13, 14.
 - 1881a *Pecten* aff. *vimineus* J. DE C. SOWERBY; BOEHM, p. 183, pl. 40, figs. 3a, 3b.
- v[®] 1881a *Pecten paraphoros* sp. nov; ВОЕНМ, p. 183, pl. 40, fig. 7.
 - 1883 Pecten cf. vimmeus J. DF C. SOWERBY; LAHUSEN, p. 23, pl. 1, fig. 17.
 - 1883 Pecten n. sp.; ВОЕНМ, р. 614, pl. 67, figs. 36–38.
- v 1883 Pecten aff. vimmens J. DE C. SOWFRBY; BOEHM, p. 615, pl. 68, figs. 1–4.
 - 1883 Pecten cf. viminens J. DE C. SOWERBY; LAHUSEN, p. 23, pl. 1, fig. 17.
 - 1886 Pecten cf. textorius (SCHLOTHEIM); SACCO, p. 25.
- v* 1886 Pecten lacunarius sp. nov; ROTHPLETZ, p. 169, pl. 14, figs. 18, 18a, 20.
- v 1888 Pecten ambiguus MUNSTER; SCHLIPPE, p. 129, pl. 2, fig. 9.
 - 1888 Pecten Dewalquei OPPEL; SCHLIPPE, p. 130, pl. 2, fig. 10.
 - 1892 Pecten (Chlamys) Rollei STOLICZKA; PARONA, p. 14, pl. 1, fig. 3.
 - 1893 Chlamys (Pecten) subtextoria (MUNSTER); SIEMIR-ADZKI, p. 118.
 - 1893 Pecten Dewalquei var. Jurensis var. nov; RICHE, p. 97, pl. 1, figs. 17, 18.
- v⁺ 1893 Pecten pelops sp. nov; DE LORIOL in DE LORIOL and LAMBERT, p. 144, pl. 10, fig. 7.
 - 1893 Pecten subarticulatus D'ORBIGNY; DE LORIOL, p. 303, pl. 32, figs. 16, 17.
 - 1893 Pecten Ferax sp. nov; DE LORIOL, p. 308, pl. 33, fig. 1.
- 1894Pecten textorius (SCHLOTHEIM); MORICKE, p. 37.v* 1894Pecten episcopalis sp. nov; DF LORIOL, p. 50,
pl. 6, figs. 1, 2.
 - 1894 Pecten cfr. nattheimensis sp. nov; DF LORIOF, p. 52, pl. 6, figs. 4–6.

- 1894 Pecten bipartitus sp. nov; FUTTERER, p. 32, pl. 5, figs. 4, 4a.
- 1895 Pecten Guyoti sp. nov; DE LORIOL, p. 42, pl. 10, fig. 2.
- 1897 Pecten textorius (SCHLOTHEIM); POMPECKJ, p. 773.
- 1898 *Pecten (Chlamys) silanus* sp. nov; GRECO, p. 111, pl. 8, figs. 34, 35.
- 1898 Pecten articulatus (SCHLOTHEIM); GREPPIN, p. 128 (non SCHLOTHEIM sp.).
- non 1903 Pecten (Chlamys) dispar TERQUEM; BISTRAM, p. 36, pl. 3, fig. 3.
 - 1903 Pecten textorus (SCHLOTHEIM); BURCKHARDT, p. 7.
 - 1903 Pecten moravicus sp. nov; REMES, p. 203, pl. 19, figs. 9a, 9b.
 - 1903 Pecten strambergensis sp. nov; REMES, p. 204, pl. 19, figs. 10a-c.
 - v* 1904 Pecten (Chlamys) Etiveyensis sp. nov; DE LORIOL, p. 221, pl. 24, fig. 1.
 - 1904 Pecten (Chlamys) episcopalis DE LORIOL; DE LORIOL, p. 223, pl. 24, fig. 7.
 - 1904 Pecten (Chlamys) blyensis sp. nov; DE LORIOL, p. 224, pl. 24, fig. 3.
 - 1904 Pecten (Chlamys) Bourgeati sp. nov; DE LORIOL, p. 225, pl. 24, figs. 5, 6.
- (?) 1904 Chlamys cf. dispar (TERQUEM); COSSMANN, p. 504.
 - 1905 Pecten (Chlamys) Dewalquei Oppel; Kilian and Guébhard, p. 743.
 - 1905 Pecten (Chlamys) voisin de Nattheimensis DE LOR-IOL; KILIAN and GUÉBHARD, p. 817.
 - 1905 Pecten (Chlamys) vimineus J. DE C. SOWERBY; KILIAN and GUEBHARD, p. 817.
- v 1905 Pecten subarticulatus D'ORBIGNY; PERON, p. 217, pl. 10, fig. 2.
- v 1905 Pecten vimineus J. DE C. SOWERBY; PERON, p. 222.
- v 1905 Pecten etiveyensis DE LORIOL; PFRON, p. 227, pl. 10, figs. 3, 4.
- v 1905 *Pecten desmoulinsianus* COTTEAU; PERON, p. 233, pl. 5, fig. 15, pl. 10, fig. 7.
- 1906 Pecten Ugolinii sp. nov; FUCINI, p. 620, pl. 11, fig. 4.
- ? 1906 Pecten capillatus sp. nov; FUCINI, p. 622, pl. 11, fig. 5.
- (?) 1907 Pecten (Chlamys) dispar TERQUEM; JOLY, p. 75.
 1907 Chlamys textoria (SCHLOTHEIM); RIAZ, p. 620.
 - 1907b *Chlamys subarticulata* (D'ORBIGNY); COSSMANN, p. 1, pl. 2, figs. 1, 2.
 - 1907bChlamys camillus (D'ORBIGNY); COSSMANN, p. 2,
pl. 2, fig. 7.
 - 1907b *Chlamys* cf. *stricta* (MUNSTER); COSSMANN, p. 2, pl. 2, fig. 5 (non MUNSTER sp.).
 - 1910 Chlamys dewalquei (OPPEL); LISSAJOUS, p. 360, pl. 10, fig. 3.
 - 1910 Cblamys subtextoria (MUNSTER); LISSAJOUS, p. 360, pl. 10, fig. 4.
 - 1911 Pecten (Chlamys) protextorius sp. nov; ROLLIER, p. 264.
 - 1911 Pecten (Chlamys) jurensis RICHE; ROLLIER, 265.
 - 1911 Pecten (Chlamys) Schombergensis sp. nov; ROL-LIER, p. 266.
 - 1911 Pecten (Chlamys) Brisgoviensis sp. nov; ROLLIER, p. 267.
 - 1911 Pecten (Chlamys) Schlippei sp. nov; ROLLIER, p. 267.
 - 1911 Pecten (Chlamys) Lycetti sp. nov; ROLLIER, p. 267.
 - 1911 Chlamys bathonica sp. nov; COSSMANN, p. 1, pl. 1, figs. 1–4.
 - 1914 Chlamys Gadoisi sp. nov; COSSMANN, p. 3, pl. 5, fig. 2.

- non 1915 Pecten vimineus J. DE C. SOWERBY; KRENKEL, p. 300, pl. 25, fig. 41.
- 1915 Pecten (Chlamys) sp. indet; ROLLIER, pl. 31, fig. 2. non 1916 Chlamys (Pseudamussium) palaemon (D'ORB-IGNY); COSSMANN, p. 46, pl. 5, figs. 18–20.
 - 1916 Pecten textorius (SCHLOTHEIM); JAWORSKI, p. 436.
 - 1916 Pecten textorius var. torulosa QUFNSTEDT; JAWORSKI, p. 437.
 - 1916 Chlamys articulata (SCHLOTHEIM); PARIS and RICHARDSON, p. 524.
- v* 1916 *Chlamys articulata* var. *notgroviensis* var. nov; PARIS and RICHARDSON, p. 525, pl. 45, fig. 2.
- v* 1916 *Chlamys articulata* var. *sauzeana* var. nov; PARIS and RICHARDSON, p. 526, pl. 45, figs. 3a, 3b.
 - 1916 Chlamys ambigua (MUNSTER); PARIS and RICHARDSON, p. 526.
- v* 1916 *Eopecten articulatus* sp. nov; PARIS and RICHARD-SON, p. 531, pl. 44, fig. 5.
 - 1917 Pecten peruanus sp. nov; TILMANN, p. 673, pl. 24, figs. 4a, 4b, 5.
 - 1917 Pecten Labuseni sp. nov; BORISSIAK and IVANOFF, p. 11, pl. 2, figs. 9, 9a.
 - 1917 Pecten pseudotextorius REDLICH; BORISSIAK and IVANOFF, p. 15, pl. 2, fig. 12.
 - 1917 Pecten ambiguus MÜNSTER; BORISSIAK and IVANOFF, p. 16, pl. 2, fig. 8.
 - 1917 Pecten subambiguus sp. nov; BORISSIAK and IVANOFF, p. 18, pl. 2, figs. 7, 7a.
 - 1920 Pecten anastomoplicus GEMMELLARO and DI BLASI; FAURE-MARGUERIT, p. 54.
 - 1920 Pecten strambergensis REMES; FAURE-MARGUER-IT, p. 57.
 - 1920 Pecten moravicus REMES; FAURE-MARGUERIT, p. 58.
 - 1920 Pecten vimineus J. DE C. SOWERBY; FAURE-MAR-GUERIT, p. 58.
 - 1920 Pecten aff. vimineus J. DE C. SOWERBY; FAURE-MARGUERIT, p. 59.
 - 1920 Pecten articulatus (SCHLOTHEIM); FAURE-MAR-GUERIT, p. 59.
 - 1920 Pecten articulatus var. passsant à P. anastomoplicus GEMMELLARO; FAURE-MARGUERIT, p. 59.
 - 1920 Pecten (Chlamys) subtextorius MUNSTER; FAURE-MARGUERIT, p. 60.
 - 1920 Pecten Rolleiformis sp. nov; FUCINI, p. 90, pl. 5, figs. 15, 16.
 - 1923 Pecten (Chlamys) torulosi QUENSTEDT; ERNST, p. 52, pl. 1, fig. 8.
 - 1923 Chlamys Dewalquei (OPPEL); LISSAJOUS, p. 158, pl. 30, figs. 3, 3a.
 - 1926 Chlamys textoria (SCHLOTHEIM); STAESCHE, p. 30.
- v 1926 *Chlamys* aff. *textoriae* (SCHLOTHEIM); STAESCHE, p. 30, pl. 1, figs. 8, 9.
- v 1926 Chlamys torulosi (QUENSTEDT); STAESCHE, p. 33, pl. 1, fig. 1.
 - 1926 Chlamys cf. Phillis (D'ORBIGNY); STAESCHF, p. 34, pl. 1, fig. 12.
- 1926 Chlamys Dewalquei (OPPEI); STAESCHE, p. 35.
- v 1926 Chlamys ambigua (MUNSTER); STAESCHE, p. 36, pl. 1, fig. 2.
- v 1926 Chlamys Rosimon (D'ORBIGNY); STAESCHE, p. 38, pl. 2, fig. 1 (non D'ORBIGNY sp.).
- v 1926 Chlamys aff. Lotharmgicae (BRANCO); STAESCHE, p. 38, pl. 1, figs. 5, 6.
 - 1926 Chlamys Meriani (GREPPIN); STAESCHE, p. 39, pl. 1, fig. 3 (non GREPPIN sp.).
 - 1926 Chlamys subtextoria (MUNSTER); STAESCHE, p. 40.
 - 1926 Chlamys paraphora (BOEHM); STAESCHE, p. 41.1926 Chlamys Schnaitheimensis (QUENSTEDT); STAE-
 - sche, p. 42.
- pv 1926 Chlamys Nattheimensis (DE LORIOL); STAESCHE, p. 42, pl. 1, fig. 13, pl. 2, fig. 2.

- v 1926 Chlamys Quenstedti (BLAKE); STAESCHE, p. 44, pl. 1, fig. 7. 1926 Chlamys cf. episcopalis (DE LORIOL); STAESCHE,
 - 1926 Chlamys cf. episcopalis (DE LORIOL); STAESCHE, p. 45, pl. 2, fig. 3.
 - ? 1926 Chlamys Trigeri (OPPEL); STAESCHE, p. 56.
 - 1926 Chlamys textoria (SCHLOTHEIM); ROMAN, pp. 113, 140, 168.
 - 1926 Chlamys ambigua (MUNSTER); ROMAN, p. 155.
 - 1926 Chlamys subtextoria (MUNSTER); ROMAN, pp. 193, 196, 197.
 - 1926 Pecten vimineus J. DE C. SOWERBY; ROMAN, p. 197.
 - 1928 Chlamys cf. vimineus (J. DE C. SOWERBY); DOUG-LAS and ARKELL, p. 136.
 - 1929 Pecten (Chlamys) textorus (SCHLOTHEIM); LAN-QUINE, pp. 82, 84, 188.
 - 1929 Pecten (Chlamys) Dewalquei OPPEL; LANQUINE, pp. 131, 199, 300, 310, 324.
 - 1929 Pecten (Chlamys) ambiguus (MUNSTER); LAN-QUINE, pp. 300, 324.
 - *Pecten (Chlamys)* cf. *Jurensis* RICHE; LANQUINE, p. 300.
 - 1930a Chlamys (Chlamys) nattheimensis (DE LORIOL); ARKELL, p. 104, pl. 10, figs. 6–8.
- v 1931a *Chlamys (Chlamys) splendens* (DOLLFUS); AR-KELL, p. 107, pl. 10, figs. 1–5, pl. 14, fig. 5.
- v 1931a Chlamys (Chlamys) cf. blyensis (DE LORIOL); ARKELL, p. 110, pl. 11, figs. 1, 1a.
- 1931 Pecten vimineus J. DE C. SOWERBY; YIN, p. 121.
- 1931 Pecten strambergensis REMES; YIN, p. 122, pl. 12, fig. 8.
- 1932 Pecten (Chlamys) textoria (SCHLOTHEIM); TZAN-KOV and BONCEV, p. 230, pl. 1, fig. 8.
- 1933 Pecten (Chlamys) sp. subtextoria group; DIET-RICH, p. 64, pl. 9, fig. 35.
- 1934 Chlamys cí. textoria (Schlotheim); Rosenkrantz, p. 113.
- 1934 Chlamys rollei (Stoliczka); Rosfnkrantz, p. 113.
- 1935a *Chlamys* cf. *splendens* (DOLLEUS); COX, p. 175, pl. 18, fig. 10.
- 1935b Chlamys sp.; Cox, p. 13, pl. 2, fig. 7.
- 1936 Aequipecten sp; WANDEL, p. 483, pl. 15, fig. 3.
- v 1936 Chlamys textorius (SCHLOTHEIM); DECHASEAUX, p. 13, pl. 1, figs. 1–4.
- v 1936 Chlamys ambiguus (MUNSTER); DECHASEAUX, p. 14, pl. 2, fig. 2, pl. 3, fig. 1.
- v 1936 Chlamys Dewalquei (OPPEL); DECHASEAUX, p. 15, pl. 1, figs. 5, 7, pl. 2, fig. 4.
- 1936 *Chlamys lotharingicus* (BRANCO); DECHASEAUX, p. 17.
- 1936 *Chlamys Camillus* (D'Orbigny); Dechaseaux, p. 18.
- 1936 *Chlamys episcopalis* (DE LORIOL); DECHASEAUX, p. 18.
- v 1936 Chlamys etiveyensis (DE LORIOL); DECHASEAUX, p. 18, pl. 3, figs. 3, 4.
- 1936 *Chlamys subtextorus* (MUNSTER); DECHASEAUX, p. 19, pl. 3, fig. 2.
- 1936 *Chlamys splendens* (DOLLFUS); DECHASEAUX, p. 20.
- v 1936 Chlamys Blyensis (DE LORIOL); DECHASEAUX, p. 20, pl. 3, fig. 8.
- v 1936 Chlamys subarnculatus (D'ORBIGNY); DECHAS-EAUX, p. 21, pl. 3 figs. 5, 6.
- v 1936 Chlamys Nattheimensis (DE LORIOL); DECHAS-EAUX, p. 22, pl. 3, fig. 7.
- . 1936 Chlamys Nisus (D'ORBIGNY); DECHASEAUX, p. 23. 1936 Chlamys Gayoti (DE LORIOL); DECHASEAUX, p. 24.
- v 1936 Chlamys Bourgeati (DE LORIOL); DECHASEAUX, p. 24, pl. 3, fig. 10.

- 1936 Chlamys sp; DECHASEAUX, p. 24, pl. 4, fig. 1.
- (?) 1936 Pecten (Chlamys) dispar TERQUEM; DECHASEAUX, p. 27.
- v* 1936 Chlamys пентаrktensis sp. nov; KUHN, p. 247, pl. 12, fig. 40.
 - 1938 Chlamys Dewalquei (OPPEL); CHOUBERT, p. 198.
 - 1938 Chlamys cf. ambigua (MUNSTER); WEIR, p. 47, pl. 3, figs. 9, 10.
 - 1942 Pecten (Chlamys) textorius (SCHLOTHEIM); LEAN-ZA, p. 172, pl. 7, fig. 2.
 - 1942 Pecten (Chlamys) textorius var. torulosa QUEN-STEDT; LEANZA, p. 173, pl. 7, fig. 4.
 - 1948 Chlamys viminea (J. DE C. SOWERBY); COX and ARKELL, p. 11.
 - 1948 Chlamys ambigua (MUNSTER); COX and ARKELL, p. 12.
 - 1948 Chlamys jurensis (RICHE); COX and ARKELL, p. 12.
 - 1948 Chlamys subtextoria (MUNSTER); COX and Ar-KELL, p. 12.
 - 1951 Chlamys torulosi (QUENSTEDT); MAUBERGE, p. 367.
 - 1951 Chlamys textoria (SCHLOTHEIM); TROEDSSON, p. 213, pl. 21, figs. 14–16.
 - 1952 Chlamys ambigua (MUNSTER); COX, p. 4, pl. 1, figs. 2-4.
 - 1952 *Chlamys subtextoria* (MUNSTER); COX, p. 6, pl. 1, figs. 5–7.
 - 1952 Chlamys cf. episcopalis (DE LORIOL); COX, p. 7, pl. 1, fig. 1.
 - 1952 Chlamys sp. indet; Cox, p. 9, pl. 1, fig. 8.
 - ? 1953 Chlamys (Chlamys) wunschae sp. nov; MARWICK, p. 98, pl. 10, figs. 23, 24.
 - 1956 Chlamys subulata securis (DUMORTIER); MEL-VILLE, p. 121, pl. 5, figs. 4, 5.
 - 1957 Chlamys kurumensis sp. nov; KOBAYASHI and HAYAMI in HAYAMI, p. 119, pl. 20, figs. 1a, 1b.
 - 1961 Chlamys textoria (SCHLOTHFIM); НАУАМІ, pp. 254, 318, 319.
 - 1961 Chlamys dewalquei var. jurensis (RICHE); BAR-BULESCU, p. 702.
 - 1964 Chlamys luciensis (D'ORBIGNY); J.-C. FISCHER, p. 17, pl. 1, figs. 14, 15.
 - 1965 Chlamys subtextoria (MUNSTER); COX, p. 55, pl. 7, fig. 8.
 - 1966 Chlamys textorius (SCHLOTHEIM); BEHMEL and GEYER, p. 28.
 - 1966 Chlamys torulosi (QUENSTEDT); BEHMEL and GEYER, p. 28.
 - 1967 Chlamys textoria (SCHLOTHEIM); BERRIDGE and IVIMEY-COOK, p. 160.
 - 1968 Chlamys textoria (SCHLOTHEIM); WOBBER, p. 36.
 - 1970 Chlamys cf. natthermensis (DE LORIOL); BEHMEL, p. 62.
 - 1970 Chlamys cf. quenstedti (BLAKE); BEHMEL, p. 62.
 - 1971 Chlamys cf. textoria (SCHLOTHEIM); HALLAM, pp. 242–244, 246, 247.
 - 1973 Entohum (?) Stoliczkai (GEMMELLARO); LENTINI, p. 27, pl. 16, fig. 1 (non GEMMELLARO sp.).
 - 1973 Chlamys (Aequipecten) cfr. Pollux (D'ORBIGNY); LENTINI, p. 27, pl. 16, fig. 1 (non D'ORBIGNY sp.).
 - 1973 Chlamys (Velata) cfr. velata (GOLDFUSS); LEN-TINI, p. 29, pl. 15, fig. 8 (non GOLDFUSS sp.).
 - 1974 *Chlamys enantyi* sp. nov; SKWARKO, p. 83, pl. 26, figs. 1, 6, 12.
 - v 1975 Chlamys subtextoria (MUNSTER); YAMANI, p. 56, pl. 2, figs. 15, 16.
 - v 1975 Chlamys paraphora (BOEHM); YAMANI, p. 57, pl. 2, fig. 18.
 - v 1975 Chlamys quenstedti (BLAKE); YAMANI, p. 58, pl. 2, figs. 1, 2.

Chlamys (Chlamys) bedfordensis sp. nov; DUFF, p. 69, pl. 5, figs. 14-16, 18, 21, text fig. 23.

Lectotype of *Pectinites textorius* SCHLOTHEIM 1820, p. 229 designated herein; HM-M23; Pl. 8, Fig. 20 herein; H: 55, L: 51; L. Lias, Amberg (Franconia).

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

,Aus älterem Flötzkalk (sogenannten Gryphitenkalk) von Amberg, theils der Gebirgsart aufliegend, theils in freyen Exemplaren, mit versteinerter Schale, jedoch etwas schädigt, und einige mit beyden Hälften (4 Ex.).

In der Form und Querstreifung dem *Pectin. asper* ähnlich, aber die Beschaffenheit und Richtung der Strahlen sehr verschieden. Sie sind ungleich dünner, liegen viel enger zusammen, und zwischen jedem etwas stärkeren und hervorspringenden wird abwechselnd ein etwas tiefer liegender, feinerer sichtbar. Äußerst feine, scharf hervortretende Querstreifen, welche eng zusammenlaufen, und auf jedem Längenstrahl kleine hervorstehende Schuppen bilden, geben dem Ganzen ein gestricktes oder gewebtes Ansehen. Beyde Hälften sind flach und gleichförmig gewölbt. Scheint nicht sehr häufig vorzukommen und ist in schön erhaltenen und vollständigen Exemplaren sehr selten.'

2. AMENDED DIAGNOSIS

Distinguished from other Jurassic species of *Ch*. (*Chlamys*) by the presence of imbricate lamellae on the plicae.

3. AMENDED DESCRIPTION

Disc shape variable, sub-orbicular early in ontogeny, becoming increasingly sub-ovate, higher than long (text fig. 148) towards the maximum height of 93.5 mm (GPIT 2-92-3). Umbonal angle increasing during ontogeny but very variable, tending to be relatively high in forms with many plicae (text figs. 149, 147). Dorsal margins concave; disc flanks low.

Approximately equilateral; inequivalve, left valve lowmoderate convexity, right valve usually almost flat. Intersinal distance variable, greater in left valve than right, increasing isometrically in the former and at a decreasing rate with respect to length in the latter (text figs. 150, 151). Depth of byssal notch variable, moderate to large, but increasing with approximate isometry (text fig. 152).

Auricles well demarcated from disc, variable in size. Both posterior auricles meeting hinge line at an obtuse angle and disc at an acute angle. Anterior auricles meeting disc at an acute angle and hingeline at a variable angle, 90° or less. All auricles bearing comarginal imbricate lamellae, anterior auri-

Text fig. 148: Chlamys (Ch.) textoria - height/length.

Text fig. 149: Chlamys (Ch.) textoria - height/umbonal angle.

Text fig. 150: Chlamys (Ch.) textoria - intersinal distance on left valve/length.

Text fig. 151: Chlamys (Ch.) textoria - intersinal distance on right valve/length.

cle of left valve also bearing radial striae of variable prominence. Anterior auricle height variable (text fig. 153). Anterior and posterior hinge lengths both variable, former increasing with respect to length at a slightly decreasing rate (text fig. 154), latter increasing at a slightly increasing rate (text fig. 155).

Disc exterior ornamented with a variable number of radial plicae, tending to increase in number by either intercalation or splitting but at a very variable rate (Pl. 6, Figs. 10–12, Pl. 7, Figs. 1–23, Pl. 8, Figs. 1–3, 5–20). Between 17 and 30 plicae at the earliest stages in ontogeny, between 17 and 98 at L: 20 (text fig. 146), between 17 and 121 at L: 40 (text fig. 146) and between 17 and at least 62 at L: 60 (text fig. 146). Plicae bearing variably spaced imbricate comarginal lamellae which tend to be closer and lower in forms with more plicae. Lamellae generally lower on right cf. left valves of all forms.

Shell thickness moderate.

4. DISCUSSION

The lectotype (herein designated) of '*Pectinites' textorius* SCHLOTHEIM (HM M23; Pl. 8, Fig. 20) is a poorly preserved specimen but the ornament and metric proportions (1) clearly fall within the range of the species described in Section 3. The latter, by reason of the historically senior position of SCHLOTHEIM's taxonomic species is therefore known hereinafter as *Chlamys (Ch.) textoria*.

The following type specimens cannot be separated from Ch. (Ch.) textoria by their metric proportions and their plical counts at the given length (in square brackets) also fall within the range of the species.

The sole known type of:

2. 'Pecten' vimineus J. DE C. SOWERBY (BM 43318; Pl. 8,

Figs. I, 5) [21:60];

the sole observed types of:

- 3. 'P.' ambiguus MONSTER (BSPHG AS VII 620; Pl. 7, Fig. 17) [32: 36].
- 4. 'P.' subtextorius MUNSTER (BSPHG AS VII 623; Pl. 7, Fig. 16) [41: 30];
 the holotype (M) of:
- 5. 'P.' semispinatus TERQUEM and JOURDY (ENSM L342; Pl. 7, Fig. 4) [22:20]; the sole observed syntype of:
- 6. 'P.' paraphoros BOEHM (BSPHG) [43:16]; the sole observed type of:
- 7. '*P.' pelops* de Loriol (MNS B.03982; Pl. 7, Fig. 6) [20:34];

a possible syntype of:

- **P.' episcopalis* DE LORIOL (MNO 3761; Pl. 7, Fig. 18) [38:26];
 syntypes of:
- 9. 'P.' (Chlamys) Etiveyensis DE LORIOL (MNS B.03986; Pl. 7, Fig. 22) [40:38];
- 10. 'P.' desmoulinsianus COTTEAU (MNS B.03987; Pl. 7, Figs. 2, 3) [18:12]; the sole observed syntype of:
- 11. *Ch. articulata* var. *notgroviensis* PARIS and RICHARD-SON (BM L41976; Pl. 7, Fig. 19) [27:51]; the sole observed type of:
- Ch. articulata var. sauzeana PARIS and RICHARDSON (BM L41978; PI. 7, Figs. 1, 7) [21:56]; the holotype (M) of:
- 13. Ch. neumarktensis KUHN (BSPHG AS J 867; Pl. 7, Fig. 13) [26:48]; the alleged holotype (M) of:
- 14. 'P.' texturatus MONSTER (BSPHG AS VII 619; Pl. 7, Fig. 21) [46:63]; and the syntypes of:

Text fig. 152: Chlamys (Ch.) textoria - depth of byssal notch/length.

- 'P.' Phillis D'Orbigny (MNO 2075A-C; Pl. 6, Fig. 10, Pl. 7, Fig. 5) [respectively 17:31, 19:39, 21:29].
- 16. '*P.' subarticulatus* D'ORBIGNY (MNO 4286, 4286A) [respectively 19:39, 19:30].

The original figures of the following are similarly inseparable:

- 17. 'P.' virguliferus PHILLIPS [39:20].
- 18. 'P.' subimbricatus ROFMER [60:33.5].
- 19. 'P.' palosus STOLICZKA [45:23].
- 20. 'P.' Sismondae CAPELLINI [36:23].
- 21. 'P.' Fortunatus DUMORTIER [36:45].
- 22. 'P.' anastomoplicus GEMMELLARO and DI BLASI [20:65].
- 23. 'P.' erctensis GEMMELLARO and DI BLASI [32:37].
- 24. 'P.' Ferax DF LORIOL [50:27].
- 25. 'P.' (Ch.) silanus GRECO [35:26].
- 26. 'P.' (Ch.) blyensis DE LORIOL [36:38.5].
- 27. 'P.' (Ch.) Bourgeati DE LORIOL [18:35].
- 28. 'P.' subambiguus Borissiak and Ivanoff [19:40].

Metric proportions of the original figures of the following are inseparable from *Ch. (Ch.) textoria* but the number of plicae cannot be counted due to poor drawing, although it appears to be within the range of the latter species.

29. 'P.' textorius torulosi QUENSTEDT.

30. 'P.' securis DUMORTIFR.

The following type specimens plot outside the range of text figs. 148–155 for the parameters stated but may be considered to be extreme variants of *Ch. (Ch.) textoria* since their plical counts at the lengths stated are within the ranges described in Section 3.

The holotype (M) of:

- 31. 'P.' Quenstedti BLAKE GPIT 2-92-3; Pl. 6, Fig. 12), high H/UA [20:80.5];
 - the sole observed syntype of:
- 32. 'P.' textorius albus QUENSTEDT (GPIT), low H/UA [47:16.5];

the sole observed type of:

 'P.' subtextorius Schnattheimensis QUENSTEDT (GPIT 4-92-7; Pl. 8, Fig. 13), high H/UA and HAA/L [43:27];

the sole observed syntype of:

34. 'P.' lacunarius ROTHPLETZ (BSPHG AS XXIV 52; Pl. 6, Fig. 11), low H/UA [25:22].

The following original figures are considered to be inseparable for the same reasons.

- 35. 'P.' Benedicti CONTEJEAN, high H/UA [30:20.5].
- 36. 'P.' subreticulatus Stoliczka, low H/UA [70:32.5].
- 37. 'P.' Rollei STOLICZKA, low H/UA [50:32].
- 38. 'P.' verticillus Stoliczka, low H/UA [70:38].
- 39. 'P.' splendens DOLLFUS, low IL/L [30:68.5].
- 40. 'P.' (Cb.) Veneris GEMMELLARO and DI BLASI, low H/UA [80:19]).
- 41. 'P.' Guyoti DF LORIOL, high H/L and H/UA [35:54].
- 42. 'P.' moravicus REMES, high H/UA [25:28].
- 43. 'P.' strambergensis REMES, high PH/L [18:15.5].

Although it has not been possible to accurately measure the number of plicae in the original figures of the following species, the overall density of the ornament (in square brackets) appears to be within the range of *Ch*. (*Ch*.) textoria and the anomalous metric proportions stated are probably a consequence of enlargement or distortion in illustration.

- 44. 'P.' Billoti CONTEJEAN, high H/UA [coarse].
- 45. 'P.' Ponzu GEMMELLARO, low H/UA [fine].
- 46. 'P.' Ugolinii FUCINI, low H/UA [fine].

The figure of '*P.' capillatus* FUCINI (47) also has low H/UA but the ornament is dense enough [40:9] to suggest that it may belong to a different species.

In cases 7, 14, 29, 30 and 40 above, the reduction or complete loss of the comarginal ornament is probably due to abrasion. In cases 13, 22, 23 and 31 the lack of comarginal orna-

ment is due to preservation as internal moulds. In 18 and 43 the apparently larger size of the posterior compared to the anterior auricle is clearly due to reversal in printing and measurements have been correspondingly altered.

'P.'vimineus (2) has been used by BOEHM (1881a) for forms said to have as few as 16 plicae (i. e. outside the range of *Ch. (Ch.) textoria).* BOEHM's figures do not, however, support this claim since they depict specimens with 18–19 plicae. KRENKEL (1915) has applied J. DE C. SOWERBY's specific name to forms which, by the irregularity of the ornament, are probably referable to *Eopecten*.

⁽*P*.' *Quenstedti* (31) was erected by BLAKE (1875) for the specimen which was incorrectly referred to ⁽*P*.' *dentatus* J. DE C. SOWERBY by QUENSTEDT (1858). ⁽*P*.' *moravicus* (42) was created by REMES (1903) for the original of ⁽*P*.' n. sp. (BOEHM, 1883), among other specimens.

QUENSTEDT'S subspecies 'P.' textorius torulosi (29) and 'P.' subtextorius Schnaitheimensis (33) were subsequently raised to specific rank by respectively ERNST (1923) and THURMANN and ÉTALLON (1862). Although outside QUENSTEDT'S hypodigm, THURMANN and ÉTALLON'S species (with 18 plicae throughout ontogeny) is within the present author's hypodigm for Ch. (Ch.) textoria. Varietal use of the name torulosi (see Synonymy) does not differ from the original hypodigm. Subspecific use of 'P.' securis DUMORTIER (30) by MELVILLE (1956) is also within the original hypodigm.

'P.' (Cb.) Etiveyensis DE LORIOL (9) was created for the holotype (M) of 'P.' icaunensis COTTEAU in the belief that the

latter name was a junior homonym of a Neocomian species. In fact the Neocomian species was described after the Jurassic species in COTTEAU's work (1855: 115) thus it could be argued that the latter is the *senior* homonym and that DE LORIOL's species is therefore a junior objective synonym which must be rejected.

P.' subarticulatus D'ORBIGNY (16) must be rejected since it is a junior primary homonym of a Valanginian species described by ROEMER (1839).

The following specimens are too poorly preserved to allow measurement of the metric proportions plotted in text figs. 148–155. However the general form and number of plicae (in square brackets) is within the range of *Ch. (Ch.) textoria* of comparable size.

- a. The syntypes of '*P*.' *Luciensis* D'Orbigny (MNO 2910) [20].
- b. The syntypes pf '*P.*' *Camillus* D'ORBIGNY (MNO 3400A–D; Pl. 7, Fig. 10) [23–24].
- c. The syntypes of '*P*.' *Opis* D'ORBIGNY (MNO 3762, 3762A, 3762B) [30].
- d. The syntypes of *'P.' Nisus* D'Orbigny (MNO 4289) [19].
- e. The syntypes of '*P*.' *Niso* D'Orbigny (MNO 4291, 4291A) [39].
- f. The sole observed type of '*Eopecten' articulatus* PARIS and RICHARDSON (BM L42060; Pl. 8, Fig. 2) [21].
- g. The original of *Ch. Rosimon* (D'ORBIGNY); STAESCHE (GPIT 1592/5; Pl. 8, Fig. 16) [48].
- h. The original of Ch. sp., DECHASEAUX [18].

Text fig. 155: Chlamys (Ch.) textoria - posterior hinge length/length.

The original figures of the following are poor illustrations or depict incompletely preserved specimens. However, they are similarly inseparable from *Ch. (Ch.) textoria*.

- i. 'P.' varius LINNAEUS; YOUNG and BIRD (non LINNAEUS) [23].
- j. 'P.' elegans YOUNG and BIRD [27].

172

- k. 'P.' textorius var. orbicularis KOCH and DUNKER [43].
- 1. 'P.' Nothus D'ORBIGNY in BOULE [19].
- m. 'P.' Hermanciae ÉTALLON [25].
- n. 'P.' Janiformis LUNDGREN [20].
- o. 'P.' Lotharingicus BRANCO [22].
- p. 'P.' bipartitus FUTTERER [28].

- q. Ch. cf. stricta (MUNSTER); COSSMANN (non MUNSTER) [35].
- r. Ch. Gadoisi Cossmann [22].
- s. 'P.' (Ch.) sp. indet; ROLLIER [22].
- t. 'P.' Lahuseni Borissiak and Ivanoff [27].
- u. 'P.' Rolleiformis FUCINI [30].
- v. Ch. sp; Cox [27].
- w. 'Aequipecten' sp; WANDEL [20].
- x. Ch. sp; DECHASEAUX [18].
- y. *Ch.* sp. indet; Cox [19].
- z. Ch. kurumensis KOBAYASHI and HAYAMI [42].
- a1. Ch. enantyi Skwarko [30].

The reduced development of comarginal ornament in a, l, o, u and x can be attributed to abrasion. However, the smoothness of the right valve compared to the strong ornamentation of the left in '*P*.' *Janiformis* (n) may be indicative of a specific difference. The irregular plication of *E. articulatus* (f) is only known in two specimens and may be caused by restricted growth amongst corals (see Section 8).

One of the original syntypes of '*P.*' *Nothus* (MNO 4284) was shown by BOULE (1929) to be representative of *Radulopecten inequicostatus*. To avoid confusion D'ORBIGNY's hypodigm was restricted to the specimen (l) which is clearly an example of *Ch.* (*Ch.*) *textoria*.

The figures of 'P.' peruanus TILMANN, 'P.' pseudotextorus REDLICH; BORISSIAK and IVANOEF, Cb. Meriani (GREPPIN); STAESCHE (non GREPPIN), 'P.' (Cb.) sp; DIETRICH, 'Entolium' (?) Stoliczkai (GEMMELLARO); LENTINI (non GEMMELLARO), Ch. ('Aequipecten') cfr. velata (GOLFUSS); LENTINI (non GOLDFUSS) all depict imperfectly preserved specimens in which neither the number of plicae nor the metric proportions could be accurately measured. However, except in the case of 'P.' peruanus (where there is some resemblance to Ch. (Ch.) valoniensis), the overall form and disposition of the plicae leave little doubt that they should be included within Ch. (Ch.) textoria. REDLICH's original description of 'P.' pseudotextorius has yet to be traced.

The figures of 'P.' textorius γ QUENSTEDT and 'P.' canaliculatus TERQUEM and PIETTE depict fragmented specimens but the characteristic ornament of Ch. (Ch.) textoria is clearly visible.

The original description of *Ch.* (*Ch.*) bedfordensis DUFF specifies, in contrast to *Ch.* (*Ch.*) textoria, different numbers of plicae on the right (70) and left (40) valves. However, it is not clear whether the description is based on a bivalved specimen and the holotype (OD; a right valve) of *Ch.* (*Ch.*) bedfordensis (BM LL27724) is very similar to small, finely ornamented specimens of *Ch.* (*Ch.*) textoria. Bearing in mind the great variability in the number of plicae in the latter species *Ch.* (*Ch.*) bedfordensis may well be synonymous.

The major proportion of the disc ornament in *Ch. (Ch.)* wunschae MARWICK is very similar to *Ch. (Ch.) textoria* but the existence of what appears to be '*Camptonectes*-ornament' on the anterior and posterior dorsal margins probably serves to distinguish the species.

The specific name articulatus SCHLOTHEIM has frequently been applied (see Synonymy) to coarsely ornamented forms of Ch. (Ch.) textoria following the illustration of such a form under 'P.' articulatus by GOLDFUSS (1833). However, v. SEEBACH (1864) and COSSMANN (1911) have examined SCHLOTHFIM's type material and pronounced it to be representative of P. vagans J. DE C. SOWERBY (= Radulopecten vagans). Subsequent illustration of syntypes by STAESCHE (1926, pl. 1, figs. 10, 11) has confirmed distinctiveness from Ch. (Ch.) textoria (and thus the inappropriate use of the name by GOLDFUSS and later authors) although the affinities of the specimens seem to be with R. inequicostatus. v. SEEBACH considered that J. DE C. SOWERBY's specific name vimineus should be applied to forms like 'P.' articulatus GOLDEUSS but DE LORIOL (1894) reckoned J. DE C. SOWERBY'S species (from the Inferior Oolite [Cox and ARKELL, 1948]) to be distinct from that of GOLDFUSS (from the Tithonian) and therefore created a new name (*nattheimensis*) for the latter. CossMANN created *Ch. bathonica* for similar specimens from the Bathonian, reasoning apparently that mere stratigraphic separation merited a specific distinction. OPPEL (1858) created 'P.' *Dewalquei* for specimens referred to 'P.' *articulatus* by CHAPUIS and DEWALQUE (1853) which he presumably considered to be outside GOLDEUSS' hypodigm for the species. The variety *Jurensis* RICHE (1893) was created for forms with compound plicae and raised to specific rank by ROLLIER (1911). Since this feature is a common aspect of the variation in coarsely ornamented *Ch. (Ch.) textoria* (e. g. Pl. 7, Fig. 11), 'P.' (*Ch.) jurensis* can safely be synonymised.

ROLLIER'S species 'P.' (Ch.) protextorius, 'P.' (Ch.) Schombergensis, 'P.' (Ch.) Brisgoviensis, 'P.' (Ch.) Schlippei and 'P.' (Ch.) Lycetti were erected for specimens which he considered had been incorrectly assigned to synonyms of Ch. (Ch.) textoria by previous authors (respectively 'P.' textorius torulosi QUENSTEDT, 'P.' textorius SCHLOTHEIN; QUENSTEDT, 'P.' ambiguus MONSTER; SCHLIPPE, 'P.' Dewalquei OPPEL; SCHLIPPE, 'P.' articulatus SCHLOTHEIM; LYCETT) but which are within the present author's hypodigm for Ch. (Ch.) textoria.

The affinities of 'P.' Palaemon D'ORBIGNY, 'P.' dispar TERQUEM, 'P.' textilis MUNSTER and 'P.' Trigeri OPPEL (and subsequent references thereto) are discussed under respectively, Entolium (E.) lunare, Ch. (Ch.) valoniensis and Camptonectes (C.) subulatus (last two).

In the interests of brevity secondary references to synonymous species are only listed in the synonymy where they occur in major works (e. g. STAESCHE, 1926, DE-CHASEAUX, 1936) or where they are of relevance to the preceding discussed or sections 5–10. Further secondary references may be traced in ROEMER (1839), QUENSTEDT (1843, 1852), D'ORBIGNY (1850), BRONN (1852), OPPEL (1866), LAUBE (1867), WAAGEN (1867), BRAUNS (1871), TATE and BLAKE (1876), LUNDGREN (1881), SIMPSON (1884), BEHRENDSEN (1891), SIEMIRADZKI (1893), BETTONI (1900), COSSMANN (1900), TRAUTH (1909), SIMIONESCU (1910), BLASCHKE (1911), ROLLIER (1911), COSSMANN (1919), COX (1928), VINASSA DE REGNY (1933), RAKUS (1964), URLICHS (1966), BARBULESCU (1971) and NITZOPOULOS (1974).

5. STRATIGRAPHIC RANGE

The earliest zonally defined records of Ch. (Ch.) textoria are from the Planorbis zone (Hettangian) of S. England (author's collection), the Rhone Basin (DUMORTIER, 1864), the Northern Alps (NEUMAYR, 1879) and Peru (TILMANN, 1917). Earlier records may however be constituted by occurrences in the 'Rhaeto-Lias' of E. France (TERQUEM, 1855) and N. Italy (CAPELLINI, 1866). Apart from the above and records from the Angulata zone of S. England (BM 77247) and E. France (TERQUEM and PIETTE, 1865) the species is unknown until the Sinemurian when it becomes widespread and locally common. Numbers in the L. and U. Pliensbachian are perhaps somewhat reduced but the species remains widespread until the Toarcian. In the L. Toarcian Ch. (Ch.) textoria appears only to occur in any numbers in the Tenuicostatum zone of Luxembourg (MAUBERGF, 1851) and the Bifrons zone of the Lyonnais (DUMORTIER, 1874; RIAZ, 1907; ROMAN, 1926). Certain U. Toarcian records are limited to specimens from the

Text fig. 156: Chlamys (Ch.) textoria - European distribution.

Cotswolds (BM L41990), E. Spain (BEHMEL and GEYER, 1966), Portugal (HALLAM, 1971), L. Saxony (ERNST, 1923) and Swabia (STAESCHE, 1926); the latter being the only area where the species occurs fairly frequently. Other Toarcian records in the literature (VERNEUIL and COLLOMB, 1952; J. MENEGHINI, 1881; BURCKHARDT, 1903; LANQUINE, 1929; DECHASEAUX, 1936) are from unspecified horizons within the stage and refer to indeterminate numbers of specimens. 'Toarcian' museum specimens, apart from those which are representative of the above records, are limited to three examples from Normandy (BM 65891, 65897, L38023) and one from Chile (BM LL26315).

In the Aalenian Ch. (Ch.) textoria again becomes locally common and continues thus through the Bajocian. In the Bathonian common occurrences are considerably more sparsely distributed and in the Callovian the species is only known to occur commonly at one horizon (Lamberti zone of Brora, Scotland). Apart from specimens from this locality undoubted examples of Ch. (Ch.) textoria from the Callovian in museums are limited to nine specimens from the E. Paris Basin (MNO [3], MNP [3], GPIT [2], DM) two from S. Germany (BSPHG, GPIG), two from Poland (BM LL17246-7) and two from England (SbM, OUM J4823). Bibliographic records excluding those which refer to the above specimens are limited to Russia (LAHUSEN, 1883; BORISSIAK and IVANOFF, 1917), Rumania (BARBULESCU, 1961), S. Germany (SCHLIPPE, 1888), the E. Paris Basin (DECHASEAUX, 1936), the Rhone Basin (LISSAJOUS, 1910, 1923) and England (DOUGLAS and ARKELL, 1928; COX and ARKELL, 1948) and the number of specimens in each case is probably small.

In the Oxfordian *Ch. (Ch.) textoria* again becomes locally common and continues thus until the U. Tithonian (ВОЕНМ, 1883; REMES, 1903; KILIAN and GUEBHARD, 1905; YIN, 1931). However, distribution is at all times somewhat patchy.

6. GEOGRAPHIC RANGE

In the Lias *Cb. (Cb.) textoria* is known from a great many localities over a large area of Europe (text fig. 156) and at the

same time it occurs widely in S. America (text fig. 157). The palaeolatitudinal range is thus about 100°. Since the species occurs in the Planorbis zone of both Europe and S. America migration to produce the disjunct distribution must have occurred either verv early in the Jurassic or in the Triassic. The lack of direct shelf connections over this period would have forced Ch. (Ch.) textoria to use extremely long routes through either the Arctic or Antarctic regions if deep waters were to have been avoided. If the occurrence of specimens in the L. Jurassic outside Europe and S. America is at all indicative (by way of signifying the existence of populations which might be relicts) of the route taken, then the records of Ch. (Ch.) textoria from Japan and Siberra suggest that the Arctic route was adopted. However, the apparent absence of *Ch*. (Ch.) textoria from the L. Jurassic of western N. America (HAYAMI's [1961] record from N. America presumably referring to specimens collected from E. Greenland by ROSEN-KRANTZ [1934]) argues against this hypothesis and since Marwick's (1953) single, doubtfully conspecific, specimen (see Section 4) is the only record from the L. Jurassic of Oceania the Antarctic route seems also to be precluded. The available evidence therefore suggests that Ch. (Ch.) textoria was able to migrate via the direct, deep water route of the Tethys and Pacific Oceans.

During the Toarcian *Ch. (Ch.) textoria* became much more sparsely distributed in Europe and outside the continent the species may well have been restricted to S. America.

During the Aalenian *Ch. (Ch.) textoria* was apparently confined to Europe where, however, it became more widespread although largely absent from the peri-Mediterranean region. A similar pattern of distribution was maintained throughout the rest of the Jurassic in Europe.

In the Bajocian the range extended along the southern shores of Tethys and apart from an apparent break in the Bathonian (which may be a function of collection failure) the species persisted in the latter area until the Kimmeridgian. WANDEL'S (1936) single specimen from the Oxfordian of the E. Indies may indicate a similar spread along the northern shores of Tethys.

Text fig. 157: Chlamys (Ch.) textoria - World distribution (Callovian reconstruction).

The particular abundance of Cb. (Cb.) textoria in the Callovian of Cutch, India (Cox, 1952) in conjunction with the scarcity of the species in Europe (see Section 5) at this time suggests a shift in the centre of population, perhaps as a response to the widespread development of unfavourable bituminous shale facies (see Section 8) in the latter region.

In the Tithonian the range of *Ch. (Ch.) textoria* may well have contracted into Europe.

7. DESCRIPTION OF ECOLOGY

Rather than laboriously catalogue the particular variants of *Ch. (Ch.) textoria* present at a given locality the author has taken the liberty in the following description of referring specimens to one of three arbitrarily defined groups, characterised by the presence of 17–26 plicae, 27–36 plicae and more than 36 plicae at L: 20, known hereinafter as the 'coarse', 'intermediate' and 'fine' phenotypes respectively.

Ch. (Ch.) textoria first occurs in any numbers in the Sinemurian when however it is found widely in all the major facies developed in the stage. It is particularly common in the Arietenkalk (Bucklandi zone), a predominantly clay and micritic limestone sequence in S. W. Germany, where it reaches a maximum height of 53 mm (GPIT). All specimens in which the shell is preserved belong to the 'fine' phenotype. The species is also common in the stratigraphically slightly higher chamosite oolites of the Frodingham Ironstone (Semicostatum-Obtusum zones) where it reaches a maximum height of 37 mm (author's collection). The majority of specimens belong to the 'intermediate' phenotype but the 'fine' phenotype also occurs (assoc. fauna, p. 69). 'Fine' phenotypes constitute all the records of Ch. (Ch.) textoria from the U. Sinemurian Hierlatz Limestone of the N. Alps. Such phenotypes also form the basis for the many records of Ch. (Ch.) textoria from clays and micritic limestone in the L. Pliensbachian of S. W. Germany and the E. Paris Basin (where the species reaches a maximum height of 73.5 mm [DECHASEAUX, 1936]). 'Intermediate' and 'coarse' phenotypes from this stage are restricted to two specimens from Germany (BSPHG; Pl. 7, Fig. 12) and one from Lorraine (NM).

Ch. (Ch.) textoria is widespread in the U. Pliensbachian but appears only to be common in micritic limestones in Swabia (STAESCHE, 1926) where it reaches a maximum height of 60 mm (BSPHG). No specimens are known from sandy facies in substage (e. g. Sandy Series, Yorkshire; Down Cliff and Thorncombe Sands, Dorset) and the species is rare in chamositic colite facies (e.g. Cleveland and Banbury Ironstones) although it reaches a maximum height of 88 mm (BM 20166). In similar facies in the L. Toarcian of the Lyonnais the species is common but reaches a maximum height of only 36.5 mm (ENSM). 'Intermediate' phenotypes are more common than 'fine' but in argillaceous facies in the same substage in Luxembourg (MAUBERGE, 1951), Ch. (Ch.) textoria is represented only by 'fine' phenotypes (maximum height 35 mm [BSPHG]). All but one (GPIG) of the museum specimens examined by the author from argillaceous facies in the U. Toarcian of Swabia exhibit the 'fine' phenotype. The maximum height attained is 53.9 mm (STAESCHE, 1926). The associated benthic fauna is considerably reduced in density and somewhat reduced in diversity.

No specimens of *Ch. (Ch.) textoria* have been recorded from Toarcian bituminous shale deposits. An isolated specimen exhibiting the 'fine' phenotype (BM 65897; Pl. 8, Fig. 19) from the argillaceous sequence of Normandy is the largest (H: 73.5) known from the stage.

Although reef and reef-derived deposits are known in the Jurassic as early as the U. Pliensbachian (Jebel Bou-Dahar, Morocco [DUBAR, 1948]) *Ch. (Ch.) textoria* delays its appearance in such facies until the Aalenian, when it is found commonly in the Pea Grit Coral Bed of the Cheltenham area in association with abundant limid bivalves, brachiopods, bryozoa and corals. All museum specimens which are undoubtedly derived from this horizon and locality exhibit the 'coarse' phenotype. The maximum height is 52 mm (BM L41973). The species is rare in Aalenian chamosite oolites in Britain (Northampton Sand Ironstone) and S. W. Germany

but in Lorraine numerous specimens are recorded, reaching a maximum height of 65 mm (NM). 'Coarse' and 'intermediate' phenotypes are approximately equally represented.

In the Sauzei zone (L. Bajocian) of Malancourt Quarry, near Metz (E. Paris Basin), Ch. (Ch.) textoria occurs abundantly in a number of patch coral reefs and in the inter-reef biosparites and marls. In specimens collected by the author which are well enough preserved to allow plical counts to be made only one specimen of thirteen from the reef facies belongs to the 'intermediate' rather than the 'coarse' phenotype. Conversely, of ten specimens from the inter-reef facies only one belongs to the 'coarse' rather than the 'intermediate' phenotype. The maximum height of the author's specimens is 50 mm but a museum specimen (NM) from the same area and horizon has a height of 74.5 mm. The associated fauna in both reef and inter-reef facies is dominated by the bivalves Ctenostreon, Lopha, Lucina, Pseudolimea and Trichites, the brachiopods Cymatorbynchia, Flabellirbynchia, Lobothyris and Rugitela, the echinoids Hemicidaris and Pseudodiadema, the gastropod Bourguetia and serpulids and bryozoans. The coral genera Isastrea and Thamnasteria form the bulk of the reef masses (HALLAM, 1975b).

In the roughly contemporaneous Sowerbyi-Banke, a marly oolite in S. W. Germany, *Ch. (Ch.) textoria* is common and reaches a maximum height of 57 mm (GPIG). Of the eighteen specimens from this bed in the GPIG, fifteen exhibit the 'intermediate' phenotype, two the 'coarse' and one the 'fine'. A shell bed of approximately the same age (Concavum-Discites zones) at Bradford Abbas, near Sherborne, Dorset has yielded numerous examples of the 'coarse' phenotype of *Ch. (Ch.) textoria* up to a maximum height of 38.5 mm (BM L11559). The associated benthic fauna is diverse and includes the bivalves *Trigonia* and *Astarte* together with the gastropods '*Alaria*', '*Cerithium*', '*Purpurina*' and '*Spinigera*' and the brachiopod '*Terebratula*' (WOODWARD, 1894).

In the U. Bajocian of the Cotswolds *Ch. (Ch.) textoria* is common in the Upper Coral Bed (Parkinsoni zone) in association with the reef-inhabiting pectinids *Spondylopecten (S.) palinurus* and *S. (S.) cardinatus*. Of the museum specimens which are certainly derived from this horizon only one (BM L41968) exhibits the 'intermediate' rather than the 'coarse' phenotype.

The 'coarse' phenotype of *Ch. (Ch.) textoria* is quite common (author's collection) in a coral bed in the M. Bathonian of the Carrière de Campagnettes (Normandy). The bivalves *Lithophaga*, *Plagiostoma*, *Trigonia* and *Vaugonia* and the brachiopod *Moorellina* make up the majority of the associated fauna (T. Palmer, 1974). A similar coral bed in Indre, where *S. (S.) palinurus* is an additional faunal element, also contains the 'coarse' phenotype of *Ch. (Ch.) textoria* (J.-C. FISCHER, 1964).

In the U. Bathonian of Normandy the 'coarse' phenotype occurs quite commonly between sponge fronds in the reeflike structures exposed at St. Aubin. The maximum height is 50 mm (author's collection) and the most abundant elements of the associated fauna are the sponges *Platychonia* and *Limnoria*, the bivalve *Plagiostoma*, the brachiopod *Moorellina* and ectoprocts and serpulid worms (T. PALMER, 1974). *Cb.* (*Cb.*) textoria is rare outside coralliferous or spongiferous deposits in the Bathonian. The only common occurrence of *Ch. (Ch.) textoria* in the Callovian is in the Clylenish Quarry Sandsone (Lamberti zone, E. Scotland) where the majority of specimens exhibit the 'intermediate' phenotype. The maximum height attained is 67 mm (BM L20601). Most of the remaining few Callovian records (see Section 5) seem also to be from arenaceous facies. However, specimens described by DUFF (1978) from the bituminous shales of the L. Oxford Clay (Coronatum zone) in England (BM LL27724-8) may constitute a record of *Ch. (Ch.) textoria* ('fine' phenotype) from argillaceous facies (see Section 4). The maximum height of DUFF's specimens is 9.7 mm.

In the Oxfordian, Ch. (Ch.) textoria is common in deposits of the Plicatilis zone in Oxfordshire and in Yorkshire, where the species reaches a maximum height of 82 mm (YM 570). According to Arkell (1931a) specimens from coral patch reefs generally exhibit the 'coarse' phenotype while those from inter-reef oolites and biosparites show the 'intermediate' phenotype. In the succeeding Transversarium zone deposits in Yorkshire (Coral Rag), examples of the 'coarse' phenotype (author's collection) are associated with almost in situ corals at Whitewall Corner Quarry, near Malton (assoc. fauna p. 157). In the Ringstead Coral Bed (Pseudocordata zone) both 'coarse' and 'intermediate' phenotypes are found but the former become relatively more common to the east, paralleling an increase in the abundance of corals (FURSICH, 1976). There are no records of Cb. (Cb.) textoria from the Oxfordian part of the Oxford Clay.

The 'coarse' phenotype is quite common in the Oxfordian coral reefs developed in the Swiss Jura (DF LORIOL, 1893) and the Yonne (MNP, assoc. fauna, p. 88). At least in the latter area specimens exhibiting the 'fine' phenotype (reaching a maximum height of 46 mm [MNP]) are also quite common in non-reef biomicrites. The 'intermediate' phenotype is absent from both areas.

Ch. (Ch.) textoria does not appear to be common elsewhere in the Oxfordian.

In the marly limestones of the Baden Beds (Kimmeridgian) in the Swiss Jura 'intermediate' phenotypes of *Ch. (Ch.) textorua* are quite common (DE LORIOL, 1878). Only seven of the nineteen museum specimens (GPIT [14], GPIG [4], BSPHG) which are undoubtedly derived from similar facies in the U. Jurassic of the Swabian Jura exhibit this phenotype (H_{max} : 39, GPIT). The remainder is made up of specimens displaying the 'fine' phenotype (H_{max} : 36, BSPHG). Both the 'intermediate' (DOLLFUS, 1863) and 'coarse' (DE LORIOL and PELLAT, 1875) phenotypes are recorded from clays in the Kimmeridgian of the Boulonnais but the numbers are indeterminate and probably small.

Ch. (Ch.) textoria is recorded from Kimmeridgian coralliferous facies in Franconia (BOEHM, 1881a) and the Jura (CONTEJEAN, 1859; THURMANN and ÉTALLON, 1862) but is unknown at La Rochelle. In the L. Tithonian reef complex at Neuburg (assoc. fauna, p. 88) the species is common (YAMANI, 1975). 'Coarse' and 'intermediate' phenotypes appear to be about equally frequent but the 'fine' phenotype is represented by only two specimens. By contrast of the eleven museum specimens (GPIT [9], BSPHG [2]) derived from L. Tithonian reef complexes elsewhere in S. Germany fully six exhibit the 'fine' phenotype. The remainder is made up of three 'coarse' and two 'intermediate' phenotypes. GEMMEL-LARO and DI BLASI (1874) record seven specimens of *Ch. (Ch.) textoria* from contemporaneous coralliferous facies in Sicily of which six exhibit the 'coarse' and one the 'intermediate' phenotype. BOEHM (1883) records 60 representatives of the 'coarse' phenotype from U. Tithonian reef limestones at Stramberg. Only one example of the 'intermediate' (BSPHG) and none of the 'fine' phenotype are known from this horizon and locality. In other Tithonian reef facies in Languedoc (YIN, 1931) and the Maritime Alps (KILIAN and GUÉBHARD, 1905) *Ch. (Ch.) textoria* is represented solely by the 'coarse' phenotype. However in Isère (FAURE-MARGUERIT, 1920) the 'fine' phenotype seems also to be present.

STAESCHE (1926) reports common examples of the 'coarse' phenotype from the Brenztaloolith, an oolite passing laterally into coral/*Diceras* facies in the L. Tithonian of S. W. Germany. A single specimen from the 'Portlandian' of the Yonne (DECHASEAUX, 1936) is the only record of *Ch. (Ch.) textoria* from any horizon in the Jurassic where the associated fauna (in this case an abundance of *Cyrena* and *Corbula* [ARKELL, 1956]) is indicative of reduced salinity.

8. INTERPRETATION OF ECOLOGY

The strong correlation, apparent from Section 7, between the occurrence of the 'coarse', 'intermediate' and 'fine' phenotypes and the existence of respectively reefs, non-reefal arenites and argillaceous sediments is the basis for considering that the majority of the variation exhibited by Group 3 (p. 161) is ecophenotypic and is concordant with the view that all members of Group 3 belong to the same species, *Ch. (Ch. textoria.* The lack of a strict phonotype facies correspondence does not necessarily weaken the grounds for this dual hypothesis since there is no reason to suppose that the boundaries of the phenotypes, arbitrarily defined at the outset, should agree perforce with the limits of variation in each facies.

The relatively large number of 'intermediate' phenotypes at Neuburg may merely reflect the development of inter-reef arenites while the high proportion of 'fine' phenotypes from other reef complexes in S. Germany may simply reflect the development of inter-reef argillites. It is also not unreasonable to suggest that the numerous examples of the 'coarse' phenotype in the Brenztaloolith are derived from nearby reefs. However, derivation from reefs is an implausible explanation for the high proportion of 'coarse' phenotypes in the Aalenian of Lorraine. The nearest reefs are apparently some 250 km away, in Nièvre (ARKELL, 1956). Furthermore the exclusive occurrence of the 'coarse' phenotype in the Bradford Abbas Fossil Bed is not matched by the presence of a reefderived fauna. Similarly there is no evidence of nearby sandgrade sediments to explain the exclusive occurrence of the 'intermediate' phenotype in the Baden Beds. It may be however that some environmental variable which is itself only loosely related to sedimentary facies is the real determinant of the phenotype adopted by Ch. (Ch.) textoria. Thus, until such time as their environments are more fully characterised and shown to be indistingushable from those of sediments containing the 'normal' phenotype for the facies, these few exceptions imply no need to assume that morphology is not controlled by the environment nor do they require rejection of the single species hypthesis advanced on p. 161.

An example illustrating the need for detailed facies analysis is provided by the reef-like stuctures at St. Aubin, colonised by examples of Ch. (Ch.) textoria exhibiting the 'coarse' phenotype. The vertical elongation of the sponge masses suggests that an upstanding framework existed and since such was undoubtedly the case in most coral accumulations containing the 'coarse' phenotype it is tempting to attribute the development of the 'coarse' phenotype to this factor. However, closer analysis of the sediments at St. Aubin indicates that the sponge masses had a relief of no more than a few centimetres above the sea bed and that their vertically elongated shape is the result of upward growth to keep pace with sedimentation (T. J. PALMER, pers. comm., 1978; see also T. PALMER and FURSICH [1981]). It therefore seems more likely that the development of the 'coarse' phenotype is due to growth in a partially enclosed habitat (see Section 9). This explanation incidentally also obviates the need to make the assumption, implicit thus far but possibly invalid in the cases of the Ringstead and Campagnettes Coral Beds, that coral accumulations which themselves had little palaeo-relief but which contain the 'coarse' phenotype of Ch. (Ch.) textoria were derived from unexposed structures of genuine reefal dimensions.

The fact that in roughly contemporaneous samples from each of the Sinemurian and Toarcian, individuals with the 'fine' phenotype attain a larger size than those with the intermediate phenotype, provides strong support for the view (see p. 163) that variation in the number of plicae is an adaptive result of developmental flexibility. Tho only case where stunting may yet be invoked is for the very small, finely ornamented and questionably conspecific specimens from the L. Oxford Clay. Here the small size and low diversity of the associated benthic faunal elements (DUFF, 1975) suggests that conditions were unfavourable for growth, probably as a result of low oxygen tension.

The absence of *Ch. (Ch.) textoria* from deep water pelagic limestones in the M. and U. Jurassic of the peri-Mediterranean region indicates that soupy substrates were not acceptable. However, the occurrence of the species in the U. Toarcian of Swabia, where the reduced density and diversity of the benthic fauna is probably the result of sediment instability, signifies at least some tolerance in this direction.

Apart from restrictions imposed by soft substrates, low oxygen tension and reduced salinities *Ch. (Ch.) textoria* seems to have been a remarkably eurytopic species. However, facies which were colonised at one time were not always occupied at another.

The absence of the species from reefal facies in the U. Pliensbachian of Morocco may perhaps be explained by competitive inferiority to the essentially Tethyan bivalves *Pseudopecten (Ps.) dentatus, Ps. (Ps.) veyrasensis, Lithiotis* and *Pachyrisma* which occur there.

The invocation of competitive inferiority, in this case to *Radulopecten vagans* and *R. fibrosus*, also goes a long way towards explaining the localised distribution of *Ch. (Ch.) textoria* in suitable shallow water facies at later horizons in the Jurassic. The rarity of the species in anything but coralliferous

and spongiferous deposits in the Bathoman is matched by a corresponding abundance of R. vagans while the rarity of Ch. (Ch.) textoria in Callovian sands and L. Oxfordian biosparites in Yorkshire, some M. Oxfordian oolites and biosparites in Oxfordshire, and in the M. and U. substages of the Oxfordian in Dorset is paralleled by the frequent occurrence of R. fibrosus. However, the restricted occurrence of Ch. (Ch.) textoria in U. Jurassic argillaceous sediments, which contrasts markedly with its even distribution in such tacies in the Lias, is not readily explicable by a competitive reaction and seems to imply an evolutionary reduction in tolerance. It is tempting to relate this to the species population size bottle-neck which must have accompanied the reduction in geographic range and patchy distribution of Ch. (Ch.) textoria in the Toarcian and Aalenian (see Sections 5, 6).

The rarity of the species in U. Pliensbachian ironstones in England and similar facies in the Aalenian of England and Germany cannot be explained by competitive inferiority or an evolutionary reduction in tolerance since almost identical sediments with a comparable fauna in the Sinemurian of England and the Toarcian and Aalenian of France contain numerous examples of Ch. (Ch.) textoria. Neither can these factors be invoked to account for the absence of the species from U. Pliensbachian sands in England since comparable facies were colonised by the species in the Sinemurian and Callovian. At present no alternative explanation for these anomalous absences is available. Likewise no plausible explanation can be offered for the lack of Ch. (Ch.) textoria in coral patch reefs at La Rochelle. An appeal to the exceptionally high density of these reefs, such as has been made to account for the corresponding rarity of the reef-inhabiting species Spondylopecten subspinosus (see p. 88) is ruled out by the fact that Ch. (Ch.) textoria occurs abundantly in similarly dense structures at Malancourt.

Disregarding those times when the lack of a particular phenotype is merely the result of the inability of *Ch. (Ch.) textoria* to colonise the relevant facies (see above) the rarity of the 'coarse' phenotype in the L. Jurassic and Callovian, of the 'intermediate' phenotype in the L. Pliensbachian and of the 'fine' phenotype in the M. Jurassic can be attributed to the poor development of respectively 'reefs', non-reefal arenites and argillaceous sediments at these times. The lack of the 'intermediate' phenotype in the Oxfordian of the Yonne has yet to be explained. Appropriate facies were apparently well developed (MÉGNIEN et al., 1970).

9. FUNCTIONAL MORPHOLOGY

The moderate to large byssal notch of *Cb. (Cb.) textoria* indicates that the species was byssally attached for at least the earlier parts of ontogeny. The maximum height of 93.5 mm (GPIT 2-92-3) in the 'coarse' phenotype is comparable to that in the close morphological analogue *Gloripallium pallium*, a Recent species which remains byssate beneath coral heads throughout ontogeny (WALLER, 1972b). The maximum height of 80 mm (YM 570) attained by the 'intermediate' phenotype is not approached by any Recent morphological analogue although *Ch. varia*, an ecological analogue, is known to reach a height of 63.5 mm (TEBBLE, 1966) and to remain byssate throughout ontogeny (SOEMODIHARDJO, 1974). The maximum height of 73.5 mm in the 'fine' phenotype is

exceeded by the Recent morphological analogue. *Ch. islandica* (WIBORG, 1963) but it is not clear whether byssal attachment is maintained at these sizes.

The reduced convexity and ornament of the right valve in *Ch. (Ch.) textoria* is paradigmatic for tight fixation during at least some periods in life.

All three of the above analogues are reported to be capable of swimming although *Ch. islandica* seems to be more proficient than the others.

The larger plical amlitudes of Ch. (Ch.) textoria in organic build-ups almost certainly conferred greater strength on the shell and may therfore have been developed as part of a 'siege' policy towards predators. The more strongly developed comarginal lamellae on the left valve could have contributed to such a policy by gripping the substrate and preventing extraction from crevice type microhabitats, in much the same way as short spines prevent extraction of the Recent species Ch. dieffenbachi from sponges (BEU, 1966). The low plical amplitudes, smaller comarginal lamellae and lower H/UA ratios of Ch. (Ch.) textoria in argillaceous sediments would have increased streamling and thrust/weight ratio, and hence swimming ability, and may therefore have been developed in line with a 'fugitive' policy towards predators. It is however difficult to account in these terms for the development of an intermediate morphology in arenaceous facies save as a means of facilitating a joint 'siege'/'fugitive' policy. Indeed, while detracting from a 'fugitive' policy, the relatively large comarginal lamellae of forms from arenaceous compared to argillaceous facies could have done nothing to enhance a 'siege' policy in the lack of an enclosed habitat. Moreover there is no a priori reason, except perhaps in the case of organic buildups, why different policies towards predators should have been adopted in each facies. A completely different order of explanation for the relationship between phenotype and facies in Ch. (Ch.) textoria may therefore be required. Camouflage, relating to the 'grainsize' of the substrate, seems the most likely alternative.

10. ORIGINS AND EVOLUTION

Since *Cb.* (*Cb.*) textoria is known from the lowest zone in the Jurassic its origins probably lie in the Triassic. Two specimens (BM unnumbered; L705, Pl. 8, Fig. 4) from the Muschelkalk of S.W. Germany appear to be within the phenotypic range of *Cb.* (*Cb.*) textoria and may therefore indicate that the species was in existence in the M. Triassic. STAFSCHF (1926) has suggested that *Cb. reticulata* (SCHLOTHFIM), a species from the same horizon, may have been the ancestor while DECHASEAUX (1936) has proposed 'Pecten' tenuistriatus MUNSTER for the same role. The latter author cites two species from the Cretaceous, *Ch. Goldfussi* (DESHAYES) and *Ch. Archiaciana* (D'ORBIGNY), as possible descendants of *Ch.* (*Cb.*) textoria.

Maximum height appears to undergo a random oscillation from the Sinemurian (53 mm) to the L. Pliensbachian (73.5 mm) to the U. Pliensbachian (88 mm) to the Toarcian (73.5 mm) to the Aalenian (62 mm) to the Bajocian (74.5 mm) to the Bathonian (50 mm) to the Callovian (67 mm) to the Oxfordian (82 mm) to the Kimmeridgian (72 mm; Dollfus, 1863) to the Tithonian (93.5 mm); GPIT 2-92-3).

Text fig. 158: Chlamys (Ch.) valoniensis - height/length.

Chlamys (Chlamys) valoniensis (DEFRANCE 1825b) Pl. 9, Figs. 1–6; text figs. 158–166

Synonymy

- 1825b Pecten Valoniensis sp. nov; DEFRANCE, p. 507, pl. 22, fig. 6.
- ? 1838 Pecten lugdunensis sp. nov; MICHELIN in LEY-MERIE, p. 346, pl. 24, fig. 5.
- 1838 Pecten Valoniensis DEFRANCE; LEYMERIE, p. 368, pl. 24, fig. 6.
- Pecten acutauritus sp. nov; SCHAFHAUTL, p. 416, pl. 7, fig. 10.
 - ? 1855 Pecten dispar sp. nov; TERQUEM, p. 323, pl. 23, fig. 6.
 - v* 1858 *Pecten cloacinus* sp. nov; QUENSTEDT, p. 31, pl. 1, figs. 33, 34.
- v*? 1858 *Pecten disparilis* sp. nov; QUENSTEDT, p. 47, pl. 4, figs. 8, 9.
 - 1860 Pecten Falgeri MERIAN; STOPPANI, p. 76, pl. 14, fig. 3.
 - ? 1860 Pecten janiriformis sp. nov; STOPPANI, p. 76, pl. 14, figs. 4–6.
 - ? 1860 Pecten aviculoides sp. nov; STOPPANI, p. 77, pl. 14, fig. 7.
 - ? 1860 Pecten barnensis sp. nov; STOPPANI, p. 78, pl. 15, fig. 2.
 - ? 1860 Pecten Winkleri sp. nov; STOPPANI, p. 78, pl. 15, fig. 4.
 - 1864 *Pecten valoniensis* DEFRANCE; DUMORTIER, p. 58, pl. 9, figs. 1–6, pl. 10, figs. 1–3.
- (?) 1865 Pecten dispar TERQUEM; TERQUEM and PIETTE, p. 103.
- (?) 1865 Pecten lugdunensis MICHELIN; TERQUEM and PIETTE, p. 104.
 - 1866 *Pecten Falgeri* MERIAN; CAPELLINI, p. 479, pl. 5, figs. 14–19.

- ? 1866 Pecten aviculoides STOPPANI; CAPELLINI, p. 480, pl. 5, figs. 20–23.
- ? 1866 Pecten janiriformis STOPPANI; CAPELLINI, p. 480, pl. 6, figs. 1–3.
- v*? 1866 Pecten Etheridgii sp. nov; TAWNEY, p. 81, pl. 3, fig. 4.
- v* 1866 Pecten Suttonensis sp. nov; TAWNEY, p. 81, pl. 3, fig. 3.
 - 1868 Pecten valoniensis DEFRANCE; JAUBERT, p. 260.
 - 1878 Pecten (Chlamys) Uhligi sp. nov; GEMMELLARO and DI BLASI in GEMMELLARO, p. 394, pl. 30, figs. 8, 10.
 - 1886 Pecten valoniensis DEFRANCE; WINKLER, p. 31.
 - 1903 Pecten (Chlamys) valoniensis DEFRANCE; BISTRAM, p. 36, pl. 3, fig. 3.
 - 1903 Pecten (Chlamys) dispar TERQUEM; BISTRAM, p. 36, pl. 3, fig. 3.
- ? 1903 Pecten (Chlamys) Falgeri MERIAN; BISTRAM, p. 37, pl. 3, fig. 1.
- (?) 1904 Chlamys cf. dispar (Terquem); Cossmann, p. 504.
 - 1905 Pecten valoniensis DEFRANCE; H. ALLEN, p. 172.
 1907 Pecten (Chlamys) valoniensis DEFRANCE; JOLY, p. 24.
- (?) 1907 Pecten (Chlamys) dispar TERQUEM; JOLY, p. 75.
 1909 Pecten (Chlamys) Valomensis DEFRANCE; TRAUTH, p. 91.
 - 1925 Pecten cf. valoniensis DEFRANCE; DUBAR, p. 257.
- v 1926 Chlamys acutaurita (SCHAFHAUTL); STAESCHE, p. 27, pl. 2, fig. 4.
 - 1926 Chlamys valoniensis DEFRANCE; ROMAN, p. 105.
 1929 Pecten (Chlamys) valoniensis DEFRANCE; LAN-QUINE, p. 60.
- 1929 Pecten (Chlamys) janiriformis STOPPANI; LAN-QUINE, p. 60, pl. 1, fig. 4.
- (?) 1929 Pecten (Chlamys) Falgeri MERIAN; LANQUINE, p. 60.

- 1936 Pecten (Chlamys) Valoniensis DFFRANCE; DFCHAS-FAUX, p. 27.
- (?) 1936 Pecten (Chlamys) dispar TERQUEM; DECHASEAUX, p. 27.
- 1945 Chlamys valoniensis (DFFRANCE); VECCHIA, p. 6.
- (?) 1945 Chlamys falgeri (MERIAN); VECCHIA, p. 7.
- 1950 Chlamys valoniensis (DEFRANCE); ROMAN, p. 25.
- ? 1951 Pecten sp; TROEDSSON, p. 140.
- 1953 Chlamys valoniensis (DEFRANCE); MOUTERDE, pp. 311, 313, 337.
- 1968 Chlamys valoniensis (DEFRANCE); WOBBER, p. 306.
- 1973 Chlamys (Chlamys) dispar (TERQUEM); LENTINI,
 p. 24, pl. 14, figs. 8, 9, ?pl. 14, fig. 10; pl. 15, figs.
 1, 2, 4, 5.

1975 Pecten acuteauritus SCHAFHAUTL; MORBFY, text fig. 2.

The type material of *Pecten Valoniensis* DF-FRANCE 1825b, p. 507, pl. 22, fig. 6 (originally housed in Caen, France) was destroyed in the Second World War. Mr. P. HODGES (University College of Swansea) has obtained topotype material from the Calcaire de Valognes (Hettangian) of Normandy with the intention of designating a neotype.

Text fig. 159: Chlamys (Ch.) valoniensis - height/umbonał angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

None given.

2. DIAGNOSIS

Distinguished from both *Ch.* (*Ch.*) pollux and *Ch.* (*Ch.*) textoria by the lack of ornament on the plicae.

3. DESCRIPTION

Disc sub-ovate, higher than long, early in ontogeny, becoming sub-orbicular (text fig. 158) near maximum height of 77 mm (ENSM). Umbonal angle variable (text fig. 159), increasing during ontogeny to produce slightly concave dorsal margins. Disc flanks moderately high and ornamented with vertical striae. Slightly inequilateral, posterior sector somewhat larger; inequivalve, left valve moderately convex, right valve almost flat.

Intersinal distance greater in left valve than right, increasing at a decreasing rate in both (text figs. 160, 161). Depth of byssal notch variable, moderate to large (text fig. 162).

Auricles well demarcated from disc, approximately equal in size. Anterior auricles meeting hinge line at an acute angle; posterior auricles meeting hinge line at an obtuse angle. Anterior auricle of right valve meeting disc at an acute or right angle; remaining auricles meeting disc at an acute angle. Anterior auricles bearing 4–6 radial costae.

Height of anterior auricle and lengh of anterior hinge increasing at a markedly decreasing rate (text figs. 163, 164). Length of posterior hinge increasing with similar but less marked allometry (text fig. 165).

Text fig. 160: Chlamys (Ch.) valoniensis - intersinal distance on left valve/length.

Text fig. 161: Chlamys (Ch.) valoniensis - intersinal distance on right valve/length.

Both valves bearing a variable number of radial plicae (Pl. 9, figs. 1–6), increasing in number by intercalation from between 20 and 30 early in ontogeny. Right valve with 31–36 at L: 20, about 39 at L: 40, about 49 at L: 60, up to a maximum of 52 at L: 67.5 (ENSM). Left valve with 36–45 at L: 20, 44–65 at L: 40, 52–72 at L: 60, up to a maximum of 79 at L: 68 (ENSM).

Shell thickness moderate.

4. DISCUSSION

The original figure of '*Pecten*' Valoniensis DEFRANCE is a poor reproduction of an internal view of a left valve. Metric proportions (1) plot within the range of the species described in Section 3 and LEYMERIF (1838) and DUMORTIER (1864), both French authors who may have had access to the type material, have applied the name to figured specimens which undoubtedly belong to the latter species. Bearing this in mind and the

Text fig. 162: Chlamys (Ch.) valoniensis - depth of byssal notch/length.

Text fig. 163: Chlamys (Ch.) valoniensis - height of anterior auricle/length.

fact that the horizon of derivation (Calcaire de Valognes) is one from which numerous examples of the species described in Section 3 have been recovered (see Section 7), DEFRANCE'S name can be confidently applied as senior synonym to the latter species, despite the lack of diagnostic features in the original figure. Mr. P. HODGES will shortly be designating a neotype (see above).

The original figure of 'P.' lugdunensis MICHELIN is very reminiscent of Pseudopecten (Ps.) equivalvis (q. v.). However, DUMORTIER (1864), who appears to have examined the type material, has stated that MICHELIN's species is in fact equivalent to *Ch.* (*Ch.*) valoniensis and this view has been taken by later authors (e. g. STAESCHE, 1926) who may also have examined the type material. The anomalously low number of plicae in the right valve (25 at L: 45.5) and the high I_R/L (2) of the original figure in comparison to *Ch.* (*Ch.*) valoniensis might be the result of respectively, preservation as an internal mould and inaccurate illustration. In view of the somewhat equivocal position of MICHELIN's species, TERQUEM and PIET-TE's (1865) unillustrated record of '*P.' lugdunensis* can only tentatively be placed in synonymy.

The original figure of 'P.' acutauritus SCHAFHAUTL seems to depict an abraded specimen of Ch. (Ch.) valoniensis and what is apparently one of SCHAFHAUTL's syntypes (BSPHG; AS IX 42; Pl.9, Fig. 3) undoubtedly belongs to the latter species. Metric proportions of the original figure (3) are inseparable from Ch. (Ch.) valoniensis.

The original figure of 'P.' dispar TERQUEM depicts a right valve with 41 plicae at L: 42 which has resemblances to both *Ch. (Ch.) valoniensis* and *Ch. (Ch.) textoria.* The specimen referred to TERQUEM's species by BISTRAM (1903) undoubtedly belongs in *Ch. (Ch.) valoniensis* and all but one (pl. 14, fig. 10, which has imbricate lamellae and is thus closer to *Ch. (Ch.) textoria)* of LENTINI's (1973) examples of *Ch. (Ch.) dispar* are similarly referable. However, in view of the fact that TERQUEM's original figure has an abnormally high I_L/L and

182
AH/L (4) some doubt must remain as to his hypodigm until the type material is located. With the possibility of confusion unillustrated records of TERQUEM'S species in TERQUEM and PIETTE (1865), COSSMANN (1904), JOLY (1907) and DECHASEAUX (1936) can only tentatively be placed in synonymy.

It has proved impossible to trace the original reference to *P.' Falgeri* MERIAN. Specimens figured under this name by STOPPANI (1860) and CAPELLINI (1866) are clearly representative of *Ch. (Ch.) valoniensis* but BISTRAM's (1903) figure bears some resemblance to *Pseudopecten (Ps.) equivalvis*. It is not clear which, if any, of these authors has examined the type material so the position of MERIAN's species is uncertain. Consequently unfigured records of his species in LANQUINE (1929) and VECCHIA (1945) can only be provisionally synonymised.

The position of 'P.' janiriformis STOPPANI is also in doubt. Although the original figure is available and resembles *Ch.* (*Ch.*) valoniensis, CAPELLINI (1866), who worked in the same field area (N. Italy) as STOPPANI and who may have examined the latter's type material, has applied his specific name to specimens which are closer to *Ch.* (*Ch.*) textoria. Whether or not they correspond to the original hypodigm for 'P.' janiriformis, specimens referred to this species by LANQUINE (1929) undoubtedly fall within the present author's concept of *Ch.* (*Ch.*) valoniensis. CAPELLINI has also applied 'P.' aviculoides STOPPANI, a species founded on a fragment resembling Ch. (Ch.) valoniensis, to a specimen which has closer affinities with Ch. (Ch.) textoria. With this uncertainty over the position of STOPPANI's species 'P.' barnensis and 'P.' Winkleri, both of which show similarities to Ch. (Ch.) valoniensis, are best treated as only provisional synonyms.

The sole observed syntype of 'P.' cloacinus QUENSTEDT (GPIT 2-1-33; Pl. 9, Fig. 5) is indistinguishable from Ch. (Ch.) valoniensis by the number of plicae on the left valve (44 at L: 36) and by metric proportions (5). The number of plicae in 'P.' Suttonensis TAWNEY (sole observed type, IGS 7830; Pl. 9, Fig. 4) and 'P.' Uhligi GEMMFLLARO and Dt BLAST has not been measured but appears to be within the range of Ch. (Ch.) valoniensis of comparable size. Metric proportions (6 and 7 respectively) are indistinguishable from the latter species.

'P.' sp.; TROEDSSON was compared with *Ch.* (*Ch.*) valoniensis and in view of the horizon of derivation (Rhaetic) it seems very likely to be a representative of this species.

The affinities of 'P.' disparilis QUENSTEDT and 'P.' Etheridgii TAWNEY are discussed under Camptonectes (C.) subulatus.

Text fig. 164: Chlamys (Ch.) valoniensis - anterior hinge length/length.

5. STRATIGRAPHIC RANGE

Cb. (*Cb.*) valoniensis is first recorded from the L. Rhaetic Westbury Formation of Glamorgan and Gloucestershire, where it is common. In the U. Rhaetic Lilstock Formation of the same area it is rare but records from the 'Rhaetic' of Lombardy (STOPPANI, 1860), Spezia (BM L14938), Provence (LANQUINE, 1929), the Pyrenees (DUBAR, 1925), Belgium (Jo-LY, 1907) and Swabia (GPIG, GPIT) may include specimens from equivalent horizons as also may records from the 'Rhaeto-Lias' of Spezia (CAPELLINI, 1866) and Lombardy (VECCHIA, 1945). The species occurs almost throughout the type section of the Rhaetian in the Kendelbach Gorge, Austria (MORBEY, 1975).

In the Jurassic *Ch. (Ch.) valoniensis* is known from the Planorbis zone (Hettangian) in the Rhone Basin (DUMORTIER, 1864; ROMAN, 1926), N. Italy (BISTRAM, 1903) and S. Wales (WOBBFR, 1968). 'Hettangian' records from S. France (LEYMERIE, 1838; JAUBERT, 1868; ROMAN, 1950), E. France (DECHASEAUX, 1936) and N. W. France (DEFRANCF, 1825b) probably also stem from this zone. The species is known from the Angulata zone of Bavaria (WINKLER, 1886) but specimens recorded by TERQUEM and PIETTE (1865) from this horizon and from the Sinemurian in E. France are only possibly conspecific (see Section 4). There is however no reason to doubt the conspecific status of at least some of the specimens recorded by DECHASEAUX (1936) from the Sinemurian of Lorraine. Since the latter is the latest stage-defined record of *Ch*.

Text fig. 165: Chlumys (Ch.) valoniensis - posterior hinge length/length.

(*Ch.*) valoniensis it is doubtful whether 'L. Lias' records in GEMMELLARO (1878) and TRAUTH (1909) include any specimens from the L. Pliensbachian.

6. GEOGRAPHIC RANGE

Ch. (Ch.) valoniensis occurs widely in Europe (text fig. 166) but elsewhere is known only from one questionably conspecific specimen (BM L72864) from Iran.

7. DESCRIPTION OF ECOLOGY

In the Westbury Formation (L. Rhaetic) *Ch. (Ch.) val*oniensis occurs most abundantly in thin limestones containing numerous examples of the bivalves *Rhaetavicula contorta* and *Placunopsis alpina*. It is however also found in carbonaceous and pyritous shales containing, in addition to *R. contorta* and *Pla. alpina, Eotrapezium, Lyriomorphia, Protocardia, Tutcheria* and the gastropod 'Natica' (IVINEY- COOK, 1974). Ammonites are absent throughout the formation and brachiopods, bryozoa, crinoids and corals are rare. In the overlying Lilstock Formation, where *Cb. (Cb.) valoniensis* is rare (D. JONES, pers. comm., 1978) the fauna is even more reduced in diversity with *Liostrea*, *Modiolus* and *Plagiostoma* the only important molluscan elements.

The number of specimens involved in other Rhaetic records is not clear but the species may well be common in N. Italy (see Sections 4, 5). The maximum height attained in the Rhaetic is 63.5 mm (BM 50031).

In the Hettangian of Glamorgan *Ch. (Ch.) valoniensis* is common in nearshore lithoclast sands containing numerous bryozoa, brachiopods, and corals but few ammonites (WOB-BFR, 1968). The species also occurs in thin clay interbeds but passing eastwards into a continuous offshore argillaceous sequence containing a more diverse ammonite and bivalve fauna, it becomes progressively rarer.

Text fig. 166: Chlamys (Ch.) valoniensis - European distribution.

Ch. (*Ch.*) valoniensis is common in the Gresten Beds (L. Lias, Austria); littoral sands, shales and limestones bordering the Palaeozoic massif of Bohemia and containing numerous examples of *Ch.* (*Ch.*) textoria and *Pseudopecten* (TRAUTH, 1909). The species also occurs commonly (H_{max}: 77, ENSM) in the Calcaire de Valognes (Hettangian, Normandy) which may represent a similar littoral facies developed at the margins of the Brittany massif. *Ch.* (*Ch.*) pollux is an associated faunal element (DUMORTIER, 1864).

DECHASEAUX (1936) reports numerous examples of *Ch.* (*Ch.*) valoniensis from nearshore sands in the Hettangian of Lorraine.

The species is not known to be common elsewhere in the L. Lias but the number of records from the Hettangian of S. France (see Section 5) suggests that it is by no means rare in the latter region. The stage is usually developed in limestones and marls overlying the Palaeozoic basement. *Ch. (Ch.) pollux* and *Pseudopecten* are also recorded (ROMAN, 1950; MOUTERDF, 1953).

There are no records from the Hettangian of Portugal where the reduced diversity bivalve fauna (dominated by *Isocyprina* and mytilids) is indicative of abnormal salinity (BOHM, 1901). Similar facies in the Hettangian of N. W. Germany are also lacking in *Ch. (Ch.) valoniensis* (HUCKRIFDE, 1967).

8. INTERPRETATION OF ECOLOGY

It is apparent from Section 7 that *Cb. (Cb.) valoniensis* favoured nearshore environments although in such situations both clay-grade and sand-grade substrates were colonised. Anaerobic conditions (pyritic and carbonaceous horizons in the Westbury Formation) were apparently tolerable but markedly abnormal salinities (Lilstock Formation; Hettangian of Portugal and N. W. Germany) were not. The reduced diversity fauna of the Westbury Formation may be indicative of slightly reduced salinity (D. JONFS, pers. comm., 1978) so the common occurrence of *Ch. (Ch.) valoniensis* could imply a measure of euryhalinity. However the absence of at least ammonites could merely be due to the shallow water depositional environment thus eurytopy in *Ch. (Ch.) valoniensis* may extend no further than a tolerance of a variety of fully marine nearshore situations.

The fact that in the Westbury Formation *Cb. (Cb.) valoniensis* occurs most abundantly at horizons with the lowest faunal diversity is suggestive of an opportunistic adaptive strategy (LEVINTON, 1970).

Co-occurrence of *Ch. (Ch.) valoniensis* and the closely related species *Ch. (Ch.) pollux* indicates that even if there was any tendency for the species to compete, it was suppressed by niche partitioning. The latter may have been effected by the use of different byssal attachment sites (see Section 9 and p. 187).

9. FUNCTIONAL MORPHOLOGY

The moderate to large byssal notch and low convexity right valve of *Ch. (Ch.) valoniensis* are adaptive for tight byssal fixation. However ontogenetic decrease in the relative length of the anterior auricle would have progressively reduced the efficiency of the byssus so it is doubtful whether the species could have remained attached in the adult stage.

The great majority of extant byssally attached pectinids apply the byssus to a hard substrate and there is no reason to suppose (cf. *Ch.* (*Ch.*) pollux) that *Ch.* (*Ch.*) valoniensis differed from this practice.

The relatively greater convexity of the left valve in *Ch.* (*Ch.*) valoniensis is paradigmatic for swimming. Ontogenetic increase in the umbonal angle probably served to maintain efficient swimming in the adult stage.

Intercalation of plicae is paradigmatic for the maintenance of shell strength and stiffness with increasing size. However, in view of the fact that many much larger pectinids do not exhibit plical intercalation it must be doubted whether this was its sole function in *Ch. (Ch.) valoniensis*.

10. ORIGINS AND EVOLUTION

No obvious ancestors for *Ch. (Ch.) valoniensis* present themselves in the Triassic.

Within the species there appear to be no phyletic trends apart from an increase in maximum height from the Rhaetic (63.5 mm) to the Hettangian (77 mm).

The post-Planorbis zone decline of *Ch. (Ch.) valoniensis* is approximately correlated with the rise of *Ch. (Ch.) textoria* and *Pseudopecten*. However, the possibility of a causal connection in terms of competition is rendered unlikely by the fact of the co-occurrence of the former with each of the latter.

Chlamys (Chlamys) pollux (D'ORBIGNY 1850) Pl. 9, Figs. 7, 8; text fig. 167

Synonymy

v* 1850	Pecten Pollux sp. nov; D'ORBIGNY, v. 1, p. 220
	(BOULE, 1907, v. 2, p. 267, pl. 23, figs. 16, 17).
1864	Pecten Pollux D'ORBIGNY; DUMORTIFR, p. 65,
	pl. 10, figs. 11, 12, pl. 11, figs. 1–4.
1876	Pecten pollux D'ORBIGNY; TATE and BLAKE,
	p. 362.
1891	Pecten amphiarotus sp. nov; DI STEFANO, p. 62.
1894	Pecten pollux D'ORBIGNY; WOODWARD, p. 360.
non 1909	Pecten amphiarotus DI STEFANO; TRAUTH, p. 90,
	pł. 2, fig. 17.
1936	Aequipecten pollux (D'ORBIGNY); DECHASEAUX,
	p. 41.
1950	Chlamys Pollux (D'ORBIGNY); ROMAN, p. 25.
1953	Pecten pollux D'ORBIGNY; MOUTERDE, p. 311.
? 1973	Chlamys (Aequipecten) amalthea (OPPEL); LEN-
	TINI, p. 27, pl. 15, fig. 9 (non OPPEL sp.).
1973	Chlamys (Aequipecten) cfr. Pollux (D'ORBIGNY):
	LENTINI, p. 27, pt. 16, fig. 1.
	0

Lectotype of *Pecten Pollux* D'ORBIGNY 1850, v. 1, p. 220 designated herein; MNS 1591; figured BOULE, 1907, pl. 23, fig. 16; H: 35, L: 31, I_R: 17, N: 4, AH: 12, PH: 9, HAA: 7, PL: 24; Sinemurian, Pouilly (Côte d'Or). Paralectotype; MNS 1591A; figured BOULE, 1907, pl. 23, fig. 17; also Sinemurian, Pouilly. 'Très-belle expèce à grosses côtes inégales, dont quelquesunes sont porvues de très-longues pointes tubuleuses. Audessous de l'O. *arcuata*, à Pouilly (Côte d'Or).'

2. AMENDED DIAGNOSIS

Distinguished from both *Ch.* (*Ch.*) textoria and *Ch.* (*Ch.*) valoniensis by the presence of long tubular spines.

3. AMENDED DESCRIPTION

Shape essentially similar to Ch. (Ch.) valoniensis. Differing only by the somewhat larger H/UA, by the slight ontogenetic reduction in the relative size of the byssal notch and by the tendency for the anterior auricles to meet the hinge line at a right angle.

Both valves ornamented with between 22 and 27 (usually 24) rounded radial plicae. Those on right valve low, equal in size, and up to 50% bearing tubular spines up to 5 mm in length, set at intervals of about 5 mm (Pl. 9, Fig. 7). Those on left valve markedly unequal in size, 5–7 being larger and bearing robust tubular spines up to 10 mm in length, spaced at intervals of about 10 mm (Pl. 9, Fig. 8). Spines absent from both valves at shell heights below about 10 mm. Sulci equal in width to plicae; both traversed by closely spaced fine comarginal striae.

Hinge line of right valve bearing dorsally directed spines up to 5 mm in length, spaced at intervals of 2–3 mm.

Shell thickness moderate. Maximum height 53 mm (BM L65791).

4. DISCUSSION

The two syntypes of '*Pecten*' *Pollux* D'ORBIGNY are both right valves, one of which (MNS 1591) is well preserved while the other (MNS 1591A) is somewhat abraded. The former is herein designated as lectotype. Although brief, D'ORBIGNY's

(1850) diagnosis and description could refer to no Sinemurian pectinid other than the species described in Section 3. There is consequently no doubt that the first taxonomically valid use of '*P.' pollux* was in 1850 (see ICZN Opinion 126) and that therefore D'ORBIGNY'S species is the senior synonym for the species described in Section 3.

Di STEFANO (1891) provided no illustration of 'P.' amphiarotus but mention in the description of spines and unequal plicae leaves little doubt that the species (from the L. Lias) is synonymous with Ch. (Ch.) pollux. TRAUTH'S (1909) misapplication of Dt STEFANO'S specific name is discussed under Pseudopecten (Ps.) dentatus.

Since LENTINI (1973) referred to 22 'ribs' in his description of *Ch.* ('Aequipecten') amalthea (OPPEL) his use of this specific name is undoubtedly outside OPPEL's (1858) hypodigm (= *Propeamussium (P.) pumilum)*. The figured specimen (from the L. Lias) appears to exhibit abraded spines and therefore may well be conspecific with *Ch. (Ch.) pollux*.

5. STRATIGRAPHIC RANGE

A few specimens of *Ch. (Ch.) pollux* are known from the uppermost Trias of the N. Calcareous Alps (BSPHG). In Britain the earliest records of *Ch. (Ch.) pollux* are from the White Lias (\equiv pre Planorbis beds, lowermost Hettangian sensu POOLE [1979]) of the Bristol area (BM L74405, L77279, L77312, L77313, L78402).

In Planorbis zone deposits *Ch. (Ch.) pollux* is known from a number of localities in England (TATE and BLAKE, 1876; WOODWARD, 1894) and is reported to be common in the Rhone Basin (DUMORTIER, 1864).

ROMAN (1950) reports common examples of *Ch. (Ch.) pollux* from undifferentiated Hettangian in the Rhone Basin and DUMORTIER (1864), MOUTERDE (1953) and DECHASEAUX (1936) refer to indeterminate numbers of 'Hettangian' specimens from respectively Normandy, the Rhone Basin and the E. Paris Basin.

Text fig. 167: Chlamys (Ch.) pollux - European distribution.

Sinemurian records are limited to seven specimens from the Rhone Basin (ENSM [5]; MNS 1591, 1591A) and indeterminate numbers of specimens from the Bucklandi zone of England (Woodward, 1894).

It is very doubtful whether 'L. Lias' specimens of *Ch.* (*Ch.*) pollux (BM L1548; BSPHG; DI STEFANO, 1891; ?LEN-TINI, 1973) are derived from horizons higher than the Sinemurian.

6. GEOGRAPHIC RANGE

Ch. (Ch.) pollux is unknown outside Europe. Within Europe the species occurs over a broad latitudinal range (text fig. 167) but is only known to be common in the Rhone Basin (DUMORTIER, 1864; ROMAN, 1950) and Sicily (DI STEFANO, 1891). This suggests a preference for warm waters (however see Section 8).

7. DESCRIPTION OF ECOLOGY

The common examples of *Ch. (Ch.) pollux* reported by ROMAN (1950) from the Hettangian of the Rhone are derived from marls containing the bivalves *Ch. (Ch.) valoniensis*, *Pseudopecten (Ps.) dentatus*, *Plicatula*, *Plagiostoma* and *Cardinia* together with crinoids and corals.

Specimens from the White Lias of the Bristol area (see Section 5) are derived from fine grained limestones and are sometimes associated with crinoid debris (e. g. BM L77279).

8. INTERPRETATION OF ECOLOGY

The limited available data suggests that *Ch. (Ch.) pollux* preferred low energy environments. The apparent rarity of the species in sediments indicative of such environments in N. Europe may be due to a dislike for relatively cool waters (see Section 6). It may however equally well be a consequence of the relative rarity of an, as yet unidentified, commensal organism (see Section 9).

The co-occurrence of *Ch. (Ch.) pollux* and the probable ancestor, *Ch. (Ch.) valoniensis* (also see p. 185), suggests that any competitive tendencies which the species may have had were suppressed by niche partitioning (see Section 10).

9. FUNCTIONAL MORPHOLOGY

The moderate to large byssal notch and only moderate adult size (H_{max} : 53) of *Ch. (Ch.) pollux* suggest that the species was byssally attached through most, if not all, of ontogeny. The low convexity of the right valve suggests that *Ch. (Ch.) pollux* was tightly fixed. The existence of spines on the right valve is non-paradigmatic for such a mode of life on hard substrates but is adaptive (providing additional purchase) for tight fixation on soft substrates. Since spines on the right valve and a large byssal notch are present in *Ch. dieffenbachi*, a Recent species which lives within sponges (BEU, 1966) it may be that *Ch. (Ch.) pollux* was tightly attached to this or some other group of soft bodied organisms. energy and fairly firm substrates indicated by respectively, argillaceous sediments and a diverse associated epifauna, would have created no need for either of the above adaptations. Spines on the left valve could have served no useful purpose for reclining in either of the above contexts.

10. ORIGINS AND EVOLUTION

Ch. (Ch.) pollux is almost certainly a descendant of Ch. (Ch.) valoniensis from which it differs significantly only by the reduced number of plicae and the presence of spinose ornament. Since the adult number of plicae in Ch. (Ch.) pollux is roughly equivalent to the juvenile number in Ch. (Ch.) valoniensis, Ch. (Ch.) pollux may be neotenous with respect to this character. The evolution of spinose ornament cannot be explained by heterochrony in the absence of ancestral allometry and suggests therefore that speciation may well have infolved changes in the structural genome as well as the regulatory changes implied by neoteny.

Since Ch. (Ch.) pollux appears to arise within the geographic range of Ch. (Ch.) valoniensis the possibility of sympatric speciation cannot be ruled out. However, since there is no evidence that Ch. (Ch.) valoniensis ever attached itself to the soft-bodied organisms to which Ch. (Ch.) pollux was presumable restricted (see p. 185 and Section 9), the author can propose no means by which such sympatric speciation might have been effected (cf. Camptonectes (Camptochlamys) clatbratus).

Within *Ch. (Ch.) pollux* the detection of any definite phyletic changes in morphology is precluded by the paucity of specimens available for study. Maximum height may undergo a decrease in the passage from the Hettangian (53 mm; BM L65791) to the Sinemurian (35 mm; MNS 1591).

Apart from the extinction of a host organism (see Section 9) no plausible deterministic explanation is available to account for the post-Sinemurian extinction of *Ch. (Ch.) pollux.*

Genus RADULOPECTEN ROLLIER 1911

Type species. OD; ROLLIER 1911, p. 158; *Pecten hemicostatus* MORRIS and LYCETT 1853, p. 10, pl. 1, fig. 16; Great Oolite (Bathonian), Minchinhampton, Gloucestershire.

DIAGNOSIS

Between 4 and 15 initial radial plicae, bearing comarginal lamellae at all stages of ontogeny on left valve but only in later stages of ontogeny or not at all on right valve.

Stratigraphic range; Jurassic (Aalenian-Tithonian). Geographic range; Europe, Asia, Africa, ?North and Central America.

DISCUSSION

Since all the Jurassic pectinid species which come under the Treatise definition of *Chlamys* (see p. 161) but which do not belong to *Ch. (Chlamys)* seem to form a monophyletic group they are usefully accorded a generic distinction from *Chlamys.* The name *Radulopecten* has been previously ap-

The spinose ornament on the right valve of Ch. (Ch.) pollux almost certainly did not act as an adaptation for a late ontogenetic reclining phase either in the form of an anchor or as a device to prevent sinking into the sediment (see p. 83). The low environmental

plied at the subgeneric level (e. g. ARKELL, 1931a; Cox, 1952; DUFF, 1978) to certain members of this group and it is herein adopted, with a revised diagnosis (see above), as the generic name for the complete group.

Within *Radulopecten* seven groups may be distinguished on the following basis:

- Left valve lacking plicae early in ontogeny but bearing about 25 radial striae of which initially between 4 and 14 develop into equal sized plicae (= *R. vagans*).
- 2. Left valve lacking plicae early in ontogeny but bearing about 40 radial striae of which initially about 15 develop into equal sized plicae (= *R. varians*).
- Left valve lacking plicae early in ontogeny but bearing between 60 and 75 radial striae of which usually between 5 and 8 develop into equal sized plicae (= *R. strictus*).
- 4. Plicae present at earliest ontogenetic stages, increasing in number by intercalation. Usually one less plica on right valve than left; latter bearing between 10 and 13 equal sized originals (= R. *fibrosus*).
- Plicae present at earliest ontogenetic stages, increasing in number by intercalation and accompanied by radial striae. Usually one more plica on right valve than left; latter bearing between 8 and 11 equal sized originals (= *R. scarburgensis*).
- 6. Plicae present at earliest ontogenetic stages, rarely increasing in number by intercalation. 11 equal sized original plicae on left valve, 12 on right; ornamented with conical spines (= *R. sigmaringensis*).
- 7. Plicae arising early in ontogeny. Between 5 and 9 unequal initial plicae, rarely increasing in number by intercalation but accompanied by radial striae (= R. *inequicostatus*).

Since the stratigraphic ranges of Groups 1 and 2 have little or no overlap it is conceivable that the supposed evolution of the latter from the former occurred without splitting. However since the morphological distance between the groups is quite large and there appear to be no intermediates, the groups are treated as separate lineages for reasons of convenience. Similar reasoning applies to the separation of the undoubtedly related Groups 5 and 6.

Groups 4, 5 and 7 tend to be restricted to particular facies (respectively; arenaceous, argillaceous and coralliferous) and since there is considerable overlap in their ranges of variation it may be that they represent ecophenotypes of a single species. as has been suggested for similarly facies-restricted forms assigned to Chlamys (Ch.) textoria. However, unlike the latter species, the features distinguishing the groups would have to have resulted from very early ontogenetic developmental flexibility. Since the author can envisage no way of testing for such developmental flexibility it seems preferable to treat the groups as separate species. In any case, at least for Groups 4 and 5, there are considerable differences in geographic distribution which are difficult to relate to facies and each group is occasionally found in the facies apparently appropriate to the other, so it is perhaps more likely that they represent separate species. Similar reasoning applies to Groups 2 and 3 where, for example, BUVIGNIER's (1852) records suggest some morphological overlap.

Notable differences in the mean form of the ornament between the latest and earliest populations of Group 4 are attributed to phyletic evolution within a single species since there can be no doubt of direct relationship and there is no conv

ing evidence of the contemporaneous existence of two separate lineages (see p. 207). The latest (uppermost Oxfordian and Kimmeridgian) populations are characterised by the development of a larger umbonal angle (specimens marked with a glyph in text fig. 187) but this is clearly a simple reflection of the attainment of greater size.

Differences in the mean form of the ornament between earlier and later populations in Groups 1 and 5 can also be interpreted as the result of phyletic evolution within single species. Since however in Group 1 the difference in mean form results from a change in the relative proportions of two distinct ('striate' and 'non-striate') morphs there is here the possibility that the difference reflects a shift in the relative abundances of two quite separate species (see p. 192 for a refutation of this argument).

> Radulopecten vagans (J. DE C. SOWERBY 1826a) Pl. 9, Figs. 9–33, ?Fig. 34; text figs. 168–176

Synonymy

- v⁵ 1826a *Pecten vagans* sp. nov; J. DE C. SOWERBY, p. 82, pl. 543, figs. 3, 4, 5.
- non 1833 Pecten vagans J. DE C. SOWERBY; GOLDFUSS, p. 44, pl. 89, fig. 8.
- ? 1839 Pecten vagans J. DE C. SOWFRBY; ROEMER, p. 29.
- 1839 Pecten vagans J. DF C. SOWERBY; BEAN, p. 60.
- v* 1850 *Pecten Rhetus* sp. nov; D'ORBIGNY, v. 1, p. 314 (BOULE, 1912, v. 7, p. 92, pl. 2, fig. 20).
- v*p 1850 Lima Nerma sp. nov; D'ORBIGNY, v. 1, p. 313 (BOULE, 1912, v. 7, p. 92, pl. 2, figs. 21, 22).
 - v 1850 Pecten vagans J. DE C. SOWERBY; D'ORBIGNY, v. 1, p. 314.
 - 1852 Pecten anisopleurus sp. nov; BUVIGNIER, p. 23, pl. 19, figs. 31–35.
 - 1852 Pecten fibrosus J. SOWERBY; QUENSTEDT, p. 507, pl. 40, fig. 43 (non J. SOWERBY sp.).
 - 1853 Pecten vagans J. DE C. SOWERBY; MORRIS and LYCETT, p. 8, pl. 1, figs. 12, 12a.
- v* 1853 Pecten peregrinus sp. nov; MORRIS and LYCETT, p. 9, pl. 1, fig. 14.
- v* 1853 Pecten bemicostatus sp. nov; MORRIS and LYCETT, p. 10, pl. 1, fig. 16.
 - 1858 Pecten vagans J. DE C. SOWERBY; OPPEL, p. 491.
 - 1858 Pecten hemicostatus MORRIS and LYCETT; OPPEL, p. 491.
- ? 1859 Pecten Thurmann sp. nov; CONTEJFAN, p. 315, pl. 23, figs. 10–12.
- 1860 Pecten vagans J. DF C. SOWERBY; COQUAND, p. 68.
- non 1860 Pecten vagans J. DE C. SOWERBY; DAMON, pl. 9, fig. 4.
- v* 1863 *Pecten Gruesbachi* sp. nov; LYCETT, p. 31, pl. 33, figs. 6, 6a.
 - 1863 Pecten maequicostatus PHILLIPS; LYCETT, p. 32, pl. 33, fig. 1a (non fig. 1; non PHILLIPS sp.).
- v* 1863 *Pecten Rushdenensis* sp. nov; LYCETT, p. 33, pl. 33, figs. 4, 4a–c.
- v* 1863 Pecten Wollastonensis sp. nov; LYCETT, p. 33, pl. 33, figs. 2, 2a-c.
 - 1863 Pecten anisopleurus BUVIGNIER; LYCETT, p. 33, pl. 33, figs. 5, 5a.
 - 1867 Pecten vagans J. DE C. SOWERBY; LAUBE, p. 10, pl. 1, fig. 10.

- 1867 Pecten hemicostatus MORRIS and LYCETT; LAUBE, p. 11, pl. 1, fig. 15.
- 1869 *Pecten hemicostatus* MORRIS and LYCETT; TER-QUEM and JOURDY, p. 127.
- 1869 Pecten anomalus sp. nov; TERQUEM and JOURDY, p. 128, pl. 13, figs. 18–20, 20a.
- 1869 Pecten rushdenensis LYCETT; TERQUEM and JOURDY, p. 129.
- non 1880 Pecten vagans J. DE C. SOWERBY; DAMON, pl. 9, fig. 4.
- v^{*} 1883 *Pectes intermittens* sp. nov; WHIDBORNE, p. 500, pl. 15, figs. 13, 13a.
- ? 1886a Pecten samilus sp. nov; DE GREGORIO, p. 669, pl. 1, fig. 7.
- ? 1886c Pecten eglus sp. nov; DE GREGORIO, p. 10, pl. 4, figs. 13a, 13b.
- 1888 Pecten vagans J. DE C. SOWERBY; SCHLIPPE, p. 131, pl. 2, fig. 5.
- 1888 Pecten bemicostatus MORRIS and LYCETT; SCHLIP-PE, p. 133, pl. 2, fig. 8.
- 1898 Pecten hemicostatus MORRIS and LYCETT; GREP-PIN, p. 128.
- 1900 Aequipecten fibrosus (J. SOWERBY); E. PHILIPPI, p. 98, text fig. 15 (non J. SOWERBY sp.).
- 1906 *Chlamys semicostata* sp. nov; COSSMANN, p. 3, pl. 1, figs. 6, 7, pl. 2, fig. 22.
- 1906 Chlamys rosimon (D'ORBIGNY); COSSMANN, p. 4, pl. 1, figs. 7–9 (non D'ORBIGNY sp.).
- 1910 Chlamys vagans (J. DE C. SOWERBY); LISSAJOUS, p. 360, pl. 9, fig. 8.
- 1911 Pecten (Radulopecten) hemicostatus MORRIS and LYCETT; ROLLIER, p. 158.
- v 1916 Pecten cf. anomalus TERQUEM and JOURDY; PARIS and RICHARDSON, p. 533, pl. 45, figs. 1a-d.
- v 1916 Pecten vagans J. DE C. SOWERBY; PARIS and RICHARDSON, p. 533.
- non 1917 Pecten vagans J. DE C. SOWERBY; BORISSIAK and IVANOFF, p. 33, pl. 4, fig. 6.
 - 1917 Pecten hemicostata MORRIS and LYCETT; BORIS-SIAK and IVANOFF, p. 35, pl. 4, figs. 1–5, 10, 11.
 - 1923 Radulopecten vagans (J. DE C. SOWERBY); LISSA-JOUS, p. 160.
 - 1923 Radulopecten semicostatus (COSSMANN); LISSA-JOUS, p. 160.
 - 1923 *Radulopecten Romani* sp. nov; LISSAJOUS, p. 162, pl. 30, figs. 4, 4a, 4b, 5, 5a, 5b.
 - 1926 Aequipecten vagans (J. DE C. SOWERBY); STAE-SCHE, p. 67.
 - 1926 Chlamys vagans (J. DE C. SOWERBY); ROMAN, p. 178.
 - 1929 Pecten (Chlamys) vagans J. DE C. SOWERBY; LANQUINE, p. 323.
 - 1932 Chlamys vagans (J. DE C. SOWERBY); DOUGLAS and ARKELL, pp. 130, 131, 158.
 - v 1932 Chlamys cf. anisopleurus (BUVIGNIER); DOUGLAS and ARKELL, pp. 130, 140.
 - v 1936 Aequipecten vagans (J. DE C. SOWERBY); DECHAS-EAUX, p. 43, pl. 6, figs. 1, 2, 3, 9.
 - v 1936 Aequipecten vagans var. anomalus (TERQUEM and JOURDY); DECHASEAUX, p. 44, pl. 6, figs. 5, 7, 8, 14.
 - 1936 Aequipecten vagans var. hemicostatus (MORRIS and LYCETT); DECHASEAUX, p. 45.
 - v 1936 Aequipecten Rushdenensis (LYCETT); DECHAS-EAUX, p. 46, pl. 6, figs. 10, 11.
 - v 1936 Aequipecten cf. Romani (LISSAJOUS); DECHAS-EAUX, p. 47, pl. 6, fig. 12.
 - 1936 Aequipecten anisopleurus (BUVIGNIER); DECHAS-EAUX, p. 49.
 - 1940 Chlamys vagans (J. DE C. SOWERBY); PARENT, p. 42.

- 1948 *Chlamys (Radulopecten) hemicostata* (MORRIS and LYCETT; COX and ARKELL, p. 12.
- 1948 *Chlamys (Radulopecten) vagans* (J. DE C. SOWER-BY); COX and ARKELL, p. 12.
- 1948 Chlamys (Radulopecten) anisopleurus (BUV-IGNIER); COX and ARKELL, p. 12.
- 1948 Chlamys (Radulopecten) wollastonensis (LYCETT); COX and ARKELL, p. 13.
- 1948 Chlamys (Radulopecten) griesbachi (LYCETT); COX and ARKELL, p. 13.
- 1948 Chlamys (Radulopecten) rushdenensis (LYCETT); COX and ARKELL, p. 13.
- 1950 Chlamys (Radulopecten) vagans (J. DE C. SOWER-BY); CHANNON, p. 246.
- 1961 Chlamys vagans (J. DE C. SOWERBY); BARBU-LESCU, p. 701.
- 1964 Chlamys (Radulopecten) hemicostata (MORRIS and LYCETT); J.-C. FISCHER, p. 17.
- 1971 Radulopecten vagans (J. DE C. SOWERBY; MAU-BERGE, pp. 25–28.
- 1971 Radulopecten vagans var. anomalus (TERQUEM and JOURDY); MAUBERGE, pp. 25–28, 3 text figs.

Lectotype of *Pecten vagans* J. DE C. SOWERBY 1826a, p. 82, pl. 543, figs. 3, 4, 5 designated ARKELL, 1931b, p. 437; BM 43319 (the original to J. DE C. SOWERBY's pl. 543, figs. 3, 4); Pl. 9, Fig. 31 herein; H: 41, L: 35; L. Cornbrash (Bathonian) fide ARKELL (1931b), Chatley, Somerset. Paralectotype; also BM 43319 (the original to J. DE C. SOWERBY's pl. 543, fig. 5); Bradford Clay or Fuller's Earth (Bathonian) fide ARKELL (1931b), Loscombe, Somerset.

Text fig. 168: Radulopecten vagans - height/length.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Rather convex, a little longer than wide; ribs 11, large, convex, decorated with large erect concave scales that are very close upon the right but distant upon the left valve; ears nearly equal, crossed by large scales.

Syn. P. sulcatus. Geol. Survey of the Yorkshire Coast, p. 233, t. 9, fig. 3. excl. Syn. 190

Text fig. 169: Radulopecten vagans - height of anterior auricle/length.

Seldom above an inch and a quarter wide. It differs from the last ['*Pecten' vimineus*] by having only half the number of ribs, and in not having the regular concentric striae which appear between the ribs in that. When young the ribs are but a little raised, although the scales are then large: a few obscure rays sometimes appear between the ribs.

This is one of those few shells which appear in several strata: it is found in clay belonging to the oolite near Bath (fig. 5); in the Bath or Great Oolite at Hampton, Gloucestershire, and Bradford, Wiltshire; above the Oolite at Ancliffe, in the Cornbrash at Chatley (figs. 3 and 4), and in the Oolite Limestone at Malton.'

2. AMENDED DIAGNOSIS

Distinguished from *R. varians* by the smaller number of initial plicae, from *R. strictus* by the smaller number of radial striae, from *R. inequicostatus* by the relatively uniform size of the initial plicae and from all other species of *Radulopecten* by the existence of a non plicate phase early in ontogeny.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long, increasing in size isometrically (text fig. 168) to a known maximum height of 50 mm (OUM J4821, BM L91533) but possibly reaching heights as great as 80 mm (see Section 7). Umbonal angle variable (text fig. 170), increasing only slightly during ontogeny. Disc flanks moderately high.

Equilateral, usually inequivalve with left valve more convex than right but all variations between latter and forms with right valve more convex than left. Convexity low – moderate in both valves. Intersinal distance greater in left valve than right, increasing with approximate isometry in both (text figs. 171, 172). Byssal notch depth variable, usually moderate (text fig. 173), increasing with approximate isometry.

Auricles well demarcated from disc; size variable (e. g. Pl. 9, Figs. 19, 33) usually moderate, anterior slightly larger than posterior. Posterior auricles usually meeting hinge line at 90°; anterior auricles meeting hinge line at 90° or less. Anterior auricle of right valve meeting disc at an obtuse angle; remaining auricles meeting disc at an acute angle. All auricles ornamented with comarginal lamellae.

Height of anterior auricle (text fig. 169) and lengths of anterior (text fig. 174) and posterior (text fig. 175) hinges variable but increasing with approximate isometry.

Text fig. 170: Radulopecten vagans - height/umbonal angle.

Text fig. 171: *Radulopecten vagans* – intersinal distance on left valve/length.

Text fig. 172: Radulopecten vagans - intersinal distance on right valve/length.

Ornament of right valve variable (e. g. Pl. 9, Figs. 23–25, 30). Between 4 and 14 low plicae, wider than sulci and increasing in number by splitting. Usually less than 4% but sometimes the major proportion of specimens from a given locality also bearing up to 50 (usually about 30) radial striae (see Section 4). All specimens bearing closely spaced comarginal striae, sometimes interrupted to form a decussate pattern. In late ontogeny of specimens with relatively high plicae, comarginal striae absent from sulci and raised into lamellae on plicae.

Ornament of left valve extremely variable (e. g. Pl. 9, Figs. 9–22, 26–29, 31–33), essentially consisting of 2 zones. Earlier ontogenetic stages exhibiting between 15 and 35 (MNO 2901 B), most commonly about 25, radial striae crossed by comarginal striae which are sometimes interrupted to form a decussate pattern. Later ontogenetic stages characterised by the development of between 4 and 14 (MNP), most commonly 5, radial striae into low plicae which are narrower than the sulci and bear variably spaced comarginal lamellae. Remaining radial striae rarely persisting and comarginal striae becoming decussate or absent in the sulci. Further plicae added by intercalation to a maximum number of 16 (BM 65889), most commonly 9. Height of non-plicate zone extremely variable; from a few to 37 mm (BM L76308). Number of plicae at a given height extremely variable; 0–11 (GPIG) at H: 10, 0–14 (MNP) at H: 15, 0–14 (MNP) at H: 20, 5 (BM 66243) – 14 (MNP) at H: 25, 6 (MNP) – 15 (BM 65889) at H: 30, 7 (MNO) – 16 (BM 65889) at H: 35. Geographically and stratigraphically separated samples tending, however, to have a characteristic mean and coefficient of variation for the number of plicae at each height (see JOHNSON, 1981).

Shell thickness moderate.

The author has presented elsewhere (JOHNSON, 1981) his reasons for considering the large range of variation described above to be the product of developmental flexibility within a single species.

Text fig. 173: Radulopecten vagans - depth of byssal notch/length.

4. DISCUSSION

As the earliest taxonomic species with type specimens within the range of the species described in Section 3 'Pecten' vagans J. DE C. SOWERBY is the senior synonym for the latter. The lectotype (BM 43319; Pl. 9, Fig. 31; 1) is a form in which plicae were introduced very early in ontogeny ('early developer') and has 11 plicae at H: 41. J. DE C. SOWERBY indicates by synonymising 'P.' sulcatus YOUNG and BIRD with "P." vagans that he included forms which the present author places in Radulopecten fibrosus within his hypodigm for 'P.' vagans. Such forms are probably the basis for his record of 'P.' vagans from the Oxfordian (Malton Oolite), a horizon at which R. fibrosus is abundant but R. vagans (i. e. the species described in Section 3) is either extremely rare or absent (see Section 5). A similar inclusion of forms which are referable to R. fibrosus may account for ROEMER's (1839) and DECHASEAUN'S (1936) records of J. DE C. SOWERBY'S species from the Oxfordian.

Specimens referred to 'P.' vagans by DAMON (1860, 1880) and BORISSIAK and IVANOFF (1917) are definitely referable to R. fibrosus.

GOLDFUSS (1833) has applied J. DE C. SOWERBY'S specific name to specimens said by SCHLOSSER (1911) to be broken examples of *Ctenostrcon*.

One of the syntypes of '*Lima' Nerina* D'ORBIGNY (MNO 2879) is indeed a nember of the Limidae but the other two (MNO 2879A; Pl. 9, Figs. 15, 22; 2) are 'intermediate developers' of *R. vagans* with 10 plicae at H: 36 and 6 plicae at H: 23 respectively. The single measurable syntype of '*P.' Rhetus* (MNO 2902; 3) is similarly an 'intermediate developer' and has 6 plicae at H: 21.5. BOULF (1912) erroneously described and figured the two syntypes of '*L.' Nerina* which belong in *R. vagans* under '*P.' Rhetus*. Cossmann (1906) thought that forms like '*P.' Rhetus*. (sensu D'ORBIGNY) were specifically distinct but that D'ORBIGNY's description did not constitute an adequate indication. He therefore erected the more fully characterised '*Cblamys' senicostata* as a replacement specific name.

The original figure of '*P*.' *anisopleurus* BUVIGNIER (4) depicts a 'late developer' with 5 plicae at H: 28.

The lectotype of '*P.' peregrous* MORRIS and LYCETT (IGS 9170; 5) is a large 'early developer' (with 9 plicae at H: 10, 11 at H: 15 and 13 at H: 20–35) while the lectotype of '*P.' hemicostatus* MORRIS and LYCETT (IGS 9168; Pl. 9, Fig. 18; 6) is a small 'intermediate developer'.

The sole observed type of 'P.' Wollastonensis LYCETT (BM L76311; Pl. 9, Fig. 9; 7) and the syntypes of 'P.' Rushdenensis LYCETT (BM L76309, L76310; Pl. 9, Fig. 16; 8) are all clearly 'late-developing' forms of *R. vagans*, 'P.' Wollastonensis exhibiting the typical continuous comarginal striae and 'P.' Rushdenensis the more unusual decussate pattern. The sole observed type of 'P.' Griesbachi LYCETT (BM L76308; 9) is only distinguishable from the 'late developer' phenotype of *R. vagans* by a lack of striae and this can almost certainly be accounted for by abrasion.

Text fig. 174: Radulopecten vagans - anterior hinge length/length.

Text fig. 175: Radulopecten vagans – posterior hinge length/length.

The holotype (M) of '*P*.' *intermittens* WHIDBORNE (SM J4759; 10) is a small 'late developer' with 19 radial striae.

The left valve figured under 'P.' anomalus TERQUEM and JOURDY has 14 plicae and is indistinguishable from *R. vagans*. However, the right valves have about 30 radial striae and are thus quite unlike typical right valves of R. vagans. Similar forms (e. g. Pl. 9, Fig. 25) occur widely in the M. Jurassic and since there appear to be no intermediate right valve morphologies it may be that they should be accorded a specific distinction from R. vagans under TERQUEM and JOURDY's name. However, the present author is aware of no locality at which 'striate' morphs occur in the absence of 'non-striate' morphs. It therefore seems more likely that they are polymorphs of the same species rather than representatives of different species. MAUBERGE (1971) has gone so far as to suggest that they may be sexual dimorphs but the stratigraphic change in relative abundance of the morphs (see Sections 7, 10) seems to argue against this particular hypothesis.

Inclusion of the 'striate' morph within *R. vagans* means that *R. Romani* LISSAJOUS and '*Ch.*' rosimon COSSMANN (non D'ORBIGNY), both of which were based on such specimens, must be synonymised with *R. vagans*.

The original figure of 'P.' Thurmanni CONTEJEAN (11) appears to depict an early developing form of R. vagans with 9 or 10 plicae at H: 10. However, the stratigraphic horizon (Kimmeridgian) is anomalously late for the latter species (see Section 5) and suggests that the figure may be a poor representation of an example of R. varians. DECHASEAUX (1936) considers CONTEJEAN'S species to be closer to R. fibrosus.

DE GREGORIO's figure of '*P.' samilus* shows no more than a poorly preserved internal mould while that of '*P.' eglus* is

only 5 mm high. However, both species exhibit 9 plicae and have a general form which suggests that they may be synonymous with *R. vagans*.

The figured specimen of 'P.' fibrosus J. SOWERBY; QUENS-TEDT has 9 plicae, unlike J. SOWERBY's species. Since it is described as an example of a variable species from the Bathonian there can be little doubt of its identity with *R. vagans*. E. PHILLIPI's (1900) '*Aequipecten' fibrosus* is similarly referable to J. DE C. SOWERBY's species.

ARKELL (1931a) examined the original (SM) to LYCETT's illustration (1863, pl. 33, fig. 1a) of 'P.' inaequicostatus Phillers and pronounced it to be a representative of 'Ch.' (R.) anisopleurus (BUVIGNIER), a species considered above to be a junior synonym of R. vagans.

5. STRATIGRAPHIC RANGE

Excluding GOLDFUSS' (1833) invalid record of the species from the German Lias (see Section 4) the earliest certain record of *R. vagans* is provided by a single specimen (BM L17615) from the Murchisonae zone (Aalenian) of the Cotswolds. Two specimens of questionable affinities (see Section 4) from strata in the Bifrons-Murchisonae zones of Sicily (DE GREGORIO, 1886a, c) may be derived from a lower horizon. Only one other specimen (NM) is known from the Aalenian.

In the L. Bajocian specimens are known from the L. Trigonia Grit of the Cotswolds (BM L95380) and the Scarborough Limestone of Yorkshire (YM 500).

In the U. Bajocian, *R. vagans* becomes quite common but it seems likely that the increase in numbers did not occur until the latest parts of the substage since all records which can be assigned to a zone (LISSAJOUS, 1910; PARIS and RICHARDSON, 1916; CHANNON, 1950; sundry specimens in the BM, OUM, and GPIT) are derived from the Parkinsoni zone.

The species is found at almost all horizons in the Bathonian, locally becoming extremely abundant.

In the Callovian *R. vagans* is reported to be common in the U. Cornbrash (Macrocephalus zone) of England by Cox and

ARKELL (1948). However, this is not borne out by the author's field work in Yorkshire and only 10 museum specimens (BM L91533, L91559, L91580; OUM J4821, J4822, J37587; SbM; DM[3]) are known from this and equivalent horizons in Europe. The only other Callovian museum specimens assignable to a zone are 3 (BM 47436, L17969[2]) from the Kellaways Rock (Calloviense zone) of Yorkshire. Rollier (1911) records *R. vagans* from the L.-M. Callovian of the Jura and BORISSIAK and IVANOFF (1917) record the species from the Callovian of Russia. Other bibliographic records from the Callovian (BUVIGNIER, 1852; DECHASEAUX, 1936), apart from those referring to the Macrocephalus zone (e. g. BEAN, 1839; LISSAJOUS, 1910; DOUGLAS and ARKELL, 1932), cannot be assigned to a substage. *R. vagans* is not known to be common anywhere in the Callovian.

Two specimens from the Oxfordian (probably Plicatilis zone) of Berkshire (BM 9930) and Yorkshire (BM L3634; Pl. 9, Fig. 34) appear to be representatives of R. vagans but the possibility cannot be entirely excluded that they are extreme variants of R. inequicostatus. Oxfordian specimens mentioned in J. DE C. SOWERBY (1826), ROFMER (1839) and DECHASEAUX (1936) and Kimmeridgian specimens mentioned in CONTEJEAN (1859) may also be representatives of R. vagans (see Section 4).

6. GEOGRAPHIC RANGE

R. vagans is generally rare in the peri-Mediterranean region (text fig. 176) and is unknown outside Europe. In the Bathonian the paucity of locally derived specimens in museums at Dijon, Tübingen and Munich compared with the abundance of specimens known from N. France and S. England suggests a latitudinal temperature control on distribution. However, bibliographic records of the species further south, although sparse, occasionally refer to numerous specimens (e. g. LISSAJOUS, 1923; LANQUINE, 1929). It therefore seems more likely that the distribution of the species is a function of facies rather than temperature and that the increase in abundance from E. France/S. Germany to N. France/S. England is a reflection of a higher frequency of the appropriate facies (see Section 8).

Text fig. 176: Radulopecten vagans - European distribution.

7. DESCRIPTION OF ECOLOGY

The first time that *R. vagans* occurs in any numbers is in the Parkinsoni zone when it is found in S. W. Germany and the Cotswolds. In the latter area the sediments (Clypeus Grit) are bioturbated, oolitic limestones in which the 'striate' morph seems to be dominant (see Section 10), reaching a maximum height of 27 mm (OUM J36384). The largest Bajocian specimen (H: 35; BM L95380) is from the L. Trigonia Grit (L. Bajocian).

R. vagans becomes locally abundant in the Bathonian and the following account concentrates on such occurrences.

In the L. Bathonian (Progracilis zone) the species occurs in grain-supported shelly oolitic limestones at Minchinhampton and Taynton in the Cotswolds. There is an abundant and diverse fauna of bivalves and gastropods but ammonites are rare. At the former locality fairly large 'early developers' are relatively common but no representatives of the 'striate' morph have been noted. Although most specimens are disarticulated the incidence of abrasion and breakage is low enough to suggest minimal transport.

In the M. Bathonian (Subcontractus zone) of Lorraine the species occurs in the Caillasse à *Anabacia* (= *Chomatoseris*). Estimates of the relative abundance of the 'striate' morph in this area range from 1% (MAUBERGE, 1971) to about 50% (DE-CHASEAUX, 1936). G. A. GILL (pers. comm., 1977) reports that *R. vagans* is a frequent associate of *Chomatoseris* (Zoan-tharia) in poorly sorted oolites and biosparites at other localities in France.

In the U. Bathonian small 'early developers' are the dominant forms of R. vagans present in the lower part of the Boueti Bed (Aspidoides zone) at Herbury (Dorset). 'Striate' morphs are unknown. The sediments are calcareous marls with an extremely abundant but low diversity fauna dominated by the bivalves Acromytilus and 'Liostrea', the brachiopods Digonella and Gomorhynchia and ectoprocts. Most specimens of R. vagans are disarticulated but the low incidence of abrasion and breakage indicates minimal transport. Specimens in the upper part of the Boueti Bed and at an equivalent horizon at Amfreville (Normandy) are also heavily encrusted with the ectroproct Attractoecia. At the same level at Ranville large bivalved 'late developers' occur in a bed which earlier collectors called the 'Calcaire à Polypiers'. Similar forms occur in the slightly later Lion Caillasse (Discus zone, Hollandi subzone) at Luc, in association with rare representatives of the 'striate' morph. The sediments, overlying a hardground, are very similar to the Boueti Bed but the fauna is considerably more diverse, with at least 65 species, including ectoprocts and sponges not seen in England (T. PALMER, 1974). Ammonites are, however, unknown. R. vagans also occurs in clays above a hardground at the same horizon in Wiltshire (Bradford Clay) and in the same region occurs in clays of the slightly later Discus subzone. Specimens from the latter horizon are usually fairly large, bivalved 'early developers' and the 'striate' morph is unknown. Serpulid encrustation is heavy but almost invariably restricted to the left valve. Specimens from the same level in Oxfordshire are mainly small 'early developers' but two 'striate' morphs (out of a total of 55 right valves collected by the author from Shipton Cement Works) are known. Almost all specimens are univalved but

abrasion and breakage are limited enough to suggest minimal transport. The sediments are non-oolitic, shell-fragment limestones containing an abundant and diverse in- and epibenthos (see p. 128) but few ammonites.

Apart from the Mâconnais (LISSAJOUS, 1923) and Provence (LANQUINE, 1929) where the stage is developed in shallow water marls and limestones, *R. vagans* is not known to be common elsewhere in the Bathonian, although records are widespread (text fig. 176). Prior to the Discus subzone the species is absent north of a line running west/east just south of Banbury and Brackley in England (BRADSHAW, 1978). The maximum height attained in the Bathonian is 44 mm (MNO 2901; Discus zone; 'late developer').

Specimens from the calcarenites of the U. Cornbrash (Macrocephalus zone; L. Callovian) of England (see Section 5) are mainly large 'late developers'. The maximum height is 51 mm (OUM J 4821, BM L91533). BORISSIAN and tVANOFF's (1917) figures of specimens from the M. Callovian of central Russia have a maximum height of 80 mm and there is no suggestion of photographic enlargement.

8. INTERPRETATION OF ECOLOGY

The absence of R. vagans from pelagic limestones in the peri-Mediterranean region suggests an intolerance of soupy substrates. However, co-occurrence with Chomatoseris, an auto-mobile solitary coral which is highly characteristic of loose, soft sands (GILL and COATES, 1977), indicates a tolerance of coarse grained unstable substrates. Tolerance of laterally shifting sediments is indicated by the occurrence of the species in oolites (e. g. Minchinhampton) while a more general tolerance of instability in the physical environment is indicated by the widespread occurrence of R. vagans in deposits where ammonites are lacking and more localised occurrence in deposits (e. g. Boueti Bed) where even the bivalve fauna is reduced in diversity. However, eurytopy was insufficiently developed to allow colonisation of the highly unstable marginal marine environments which were present in central England during much of the Bathonian (BRADSHAW, 1978).

By far the most common occurrence of *R. vagans* is immediately above hardgrounds or in minimally transported or in situ shell beds with an abundance of other shelly epibenthos (e. g. Luc, Amfreville, Herbury, Bradford-on-Avon). This suggests that the existence of hard substrates was the major factor controlling distribution (see Section 9) and implies that the abundance of the species at Minchinhampton is more a reflection of the abundance of shelly epibenthos than of a particular liking for shifting substrates. The abundance of the species at Shipton may likewise be a consequence of the unusual richness of the associated epibenthos.

Since serpulid worm encrustation of bivalved specimens is limited to the left valve it seems likely that the right valve was tightly adpressed against the substrate during life (see Section 9). Ectoproct encrustation probably occurred after death since bivalved specimens are rarely encrusted.

There is a strong suggestion of a competitive reaction between *R. vagans* and *Chlamys (Ch.) textoria*. The latter, a species exhibiting considerable substrate eurytopy in the Bajocian, is largely confined to organic build-ups during the Bathonian (the acme of *R. vagans*) and the author knows of no locality at which both species have been found in numbers.

The author has presented elsewhere (JOHNSON, 1981) an analysis which suggests that in much the same way as in the Recent species *Chlamys dieffenbachi* (see BEU, 1966), plical variation in *R. vagans* reflects ecophenotypic reaction to environmental differences which were developed over the space of a few metres. In the case of *Ch. dieffenbachi* environmental heterogeneity is due to the patchy distribution of sponge substrates. Since the associated sediments have not been closely examined for the presence of spicules, it cannot be ruled out that *R. vagans* also developed different patterns of plication according to whether or not sponges constituted the substrate for attachment. That other soft-bodied organisms were involved is, of course, also a possibility.

9. IL NCTIONAL MORPHOLOGY

The usually moderately deep byssal notch combined with small or moderate adult size (with the probable exception of a few specimens from the M. Callovian of Russia [see Section 7]) suggests that R. vagans was byssally attached throughout life. The generally lower convexity of the right valve and its subdued ornamentation are paradigmatic for tight fixation and variations in convexity perhaps suggest that R. vagans was adpressed against hard surfaces of variable shape (cf. below).

Although intercalation of new plicae would have probably led to increased shell strength and stiffness it is very doubtful whether the addition of numerous plicae in some specimens of R. vagans was a response to a need for a mechanically superior shell. In Ch. dieffenbachi a need for an increase in the density of plical spinelets in order to grip a sponge substrate seems to be the underlying reason for the adoption of a densely plicate form (BEU, 1966). A similar type of explanation involving some soft-bodied organism, even if not sponges, is suggested in R. vagans by the fact that the comarginal lamellae become progressively more localised onto the crests of the plicae, thereby retaining the possibility of close contact with the substrate, in the ontogenetic passage from a weakly to a strongly plicate form. If this explanation is correct then the distribution of the soft-bodied host must have been determined by the existence of hard substrates so as to produce the observed correlation between such substrates and the occurrence of R. vagans.

The presence of upstanding ornament and absence of anything more than minimal ontogenetic increase in umbonal angle must have greatly restricted swimming ability in *R. vagans*.

10. ORIGINS AND EVOLUTION

The origins of *R. vagans* are a mystery. The author is aware of no Jurassic pectinid species which can be regarded as a likely forebear. The ancestry of *R. vagans* may be connected with the largely Asiatic Triassic genus *Indopecten*.

R. vagans exhibits phyletic evolution in right valve morph frequency. Samples from the Bajocian only include a small proportion of the 'non-striate' morph but by the L. Bathonian (Progracilis zone) this morph was dominant, perhaps as

the result of some selective superiority. There also seems to be an evolutionary change in maximum height from the Bathonian to the Callovian. Forms possessing a similar 'late developer' phenotype (which thus rules out any chance of a purely ecophenotypic difference) reach a maximum height of 44 mm in the former stage and 51 mm in the latter stage.

The Callovian decline of *R. vagans* was probably the result of the widespread development of argillaceous facies producing soft sediments unfavourable for colonisation by the host organism (see Section 9).

Radulopecten varians (ROEMER 1836) Pl. 10, Figs. 1–3; text figs. 177–180

Synonymy

- 1836 Pecten varians sp. nov; ROEMER, p. 68, pl. 3, fig. 19.
- ? 1852 Pecten Beaumontinus sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 26–30.
- ? 1859 Pecten Thurmanni sp. nov; CONTEJEAN, p. 315, pl. 23, figs. 10–12.
- ? 1859 Hunnites clypeatus sp. nov; CONTEJEAN, p. 317, pl. 24, fig. 14.
- 1860 Pecten varians ROEMER; COQUAND, p. 79.
- ? 1862 Pecten Banneanus sp. nov; Étallon in Thur-MANN and Étallon, p. 259, pl. 36, fig. 12.
- ? 1862 Pecten Pagnardi sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 259, pl. 36, fig. 12.
- 1862 Pecten qualicosta ÉTALLON in THURMANN and ÉTALLON, p. 260, pl. 36, fig. 13.
- non 1862 Pecten beaumontinus BUVIGNIER; THURMANN and ÉTALLON, p. 260, pl. 36, fig. 14.
 - 1863 Pecten perstrictus sp. nov; ÉTALLON, p. 56, pl. 8, fig. 8.
 - 1864 Pecten varians ROEMER; V. SEEBACH, p. 98.
 - 1871 Pecten Urius sp. nov; SAUVAGE and RIGAUX, p. 354.
 - 1872 Pecten Urius SAUVAGE and RIGAUX; SAUVAGE and RIGAUX, p. 176, pl. 9, fig. 5.
 - 1875 Pecten qualicosta ÉTALLON; DE LORIOL and PEL-LAT, p. 202, pl. 22, figs. 18–20.
 - 1893 Pecten beaumontinus BUVIGNIER; DE LORIOL, p. 305, pl. 32, fig. 18.
 - 1893 Pecten qualicosta ÉTALLON; DE LORIOL, p. 306, pl. 32, fig. 20.
 - 1900 Pecten varians ROEMER; E. PHILIPPI, p. 99, text fig. 16a.
 - v 1905 Pecten qualicosta ÉTALLON; PERON, p. 221.
 - v 1905 Pecten beaumontinus BUVIGNIER; PERON, p. 230.
 1917 Pecten cf. qualicosta ÉTALLON; BORISSIAK and IVANOFF, p. 49, pl. 3, fig. 2.
 - 1917 Pecten donezianus sp. nov; BORISSIAK and IVANOFF, p. 52, pl. 3, figs. 5–12.
 - ? 1921 Chlamys Beaumontina (BUVIGNIER); COSSMANN, p. 6, pl. 1, fig. 1.
 - 1926 Chlamys (Aequipecten) qualicosta (ÉTALLON); ARKELL, p. 548, pl. 32, figs. 4, 5.
- pv 1931a Chlamys (Chlamys) qualicosta (ÉTALLON); AR-KELL, p. 111, pl. 11, figs. 2–5.
 - 1936 Aequipecten qualicosta (ÉTALLON); DECHASEAUX, p. 51, pl. 7, figs. 7–21.
- v 1936 Aequipecten Beaumontinus (BUVIGNIER); DECHAS-EAUX, p. 53, pl. 8, fig. 4.
- 1936 Aequipecten perstrictus (ÉTALLON); DECHAS-EAUX, p. 56, pl. 8, fig. 8.
- v* 1936 Aequipecten Buvignieri sp. nov; DECHASEAUX, p. 58, pl. 8, fig. 2.

? 1952 Chlamys (Radulopecten) qualicosta (ÉTALLON); CHAVAN, p. 37, pl. 2, fig. 15.

The type material of *Pecten varians* ROEMER 1836, p. 68, pl. 3, fig. 19 is probably in the ROEMER-PELIZAEUS-MUSEUM, Hildesheim, W. Germany. The material was derived from the Oxfordian of N. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'P. testa ovato-orbiculari convexo plana radiatim striata, valva sinistra convexiore, striis subinaequalibus lineis concentricis in striarum longitudinalium dorso lamelloso squamosis decussatis, auriculis inaequalibus longitudinaliter striatis.

Das Gehäuse ist eirund, oder fast kreisrund; die Schalen sind beide gewölbt, die linke am meisten; beide sind mit zahlreichen ungleichen Längsstreifen besetzt, auf denen die concentrischen Linien blättrige Schuppen bilden; diese sind gewöhnlich nur am unteren Teile der Schalen deutlich, fehlen aber selten ganz. Die Ohren sind ungleich längsgestreift und wenig quer-liniert.

Ist gewöhnlich etwas kleiner als das abgebildete Exemplar und findet sich im oberen Coral Rag bei Hoheneggelsen so wie am Galzenberge bei Hildesheim.'

2. AMENDED DIAGNOSIS

Differing from *R. vagans, R. strictus* and *R. inequicostatus* by the larger number of initial plicae and from all other species of *Radulopecten* by the existence of a non-plicate phase early in ontogeny.

Text fig. 177: Radulopecten varians - height/length.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long, early in ontogeny growing allometrically (text fig. 177) to become sub-orbicular near the maximum height of 33 mm (NM). Umbonal angle variable (text fig. 179), increasing slightly during ontogeny to produce concave dorsal margins. Disc flanks low.

Text fig. 178: Radulopecten varians - anterior hinge length/length.

Equilateral; inequivalve, left valve more convex than right, both low convexity. Intersinal distance greater in left valve than right; moderate sized byssal notch.

Auricles well separated from disc, moderate in size, anterior slightly larger than posterior. Anterior auricles meeting hinge line and disc at a right angle; posterior auricles meeting hinge line at a right or obtuse angle and disc at an acute angle. Anterior auricles ornamented with 2–4 radial costae. Anterior hinge length moderate (text fig. 178).

Right valve ornamented near the umbo with closely spaced comarginal striae and usually a large number of very fine radial striae. Latter developing into plicae at shell heights above about 10 mm to match those on the left valve (Pl. 10, Fig. 1). Comarginal ornament tending to become reduced in the sulci.

Left valve also ornamented with comarginal striae near the umbo. All specimens possessing about 40 radial striae of which initially about 15 develop into narrow plicae to be followed, at a variable rate, by the remainder such that at H: 20 there are between 16 (OUM J1891) and 39 (OUM J9005) plicae and at H: 30 between 20 (BM 33423) and 40 (MNO 4293) plicae (Pl. 10, Figs. 2,3). Comarginal striae expanding into lamellae on the crests of the plicae and tending to disappear in the sulci.

Shell thickness moderate.

4. DISCUSSION

ROEMER'S (1836) figure of '*Pecten' varians* depicts a right valve whose number of plicae (ca. 28 at H: 22) and metric proportions (1) fall within the range of the species described in Section 3. Since ROEMER'S name is the earliest available the latter is known hereinalter as *Radulopecten varians*.

There is some doubt over the affinities of 'P.' Beaumontinus BUVIGNIER. This species and subsequent references thereto is discussed under R. strictus (MUNSTER). Since ÉTAL-LON'S (1862) 'P.' Banneanus was allied to BUVIGNIER'S species

Text fig. 179: Radulopecten varians - height/umbonal angle.

and his 'P.' Pagnardi to MUNSTER's species some doubt must remain as to the affinities of these species in spite of the fact that the figures of both appear to depict examples of R. varians. The figure of 'P.' qualicosta ÉTALLON undoubtedly depicts a specimen of R. varians as does DE LORIOL'S (1893) figure of a specimen (repository: École Cantonale de Porrentruy, Switzerland) chosen as lectotype. CHAVAN'S (1952) record of 'Chlamys' (R.) qualicosta appears to be a misnomer for R. fibrosus (q. v.).

ÉTALLON'S (1863) original reference to '*P*.' perstrictus has proved impossible to trace. However, the description has been reiterated by DECHASEAUX (1936) together with a photograph of a type, which is indistinguishable from *R. varians*. The original reference to '*P.*' *Urius* SAUVAGE and RIGAUX has similarly proved impossible to trace but the species was redescribed and figured by the same authors (1872) and the number of plicae (30 at H: 21.5) and metric proportions (2) are within the range of *R. varians*.

The holotype (M) of 'Aequipecten' Buvignieri DECHASEAUX (NM) has 22 plicae at H: 33 and metric proportions (3) which are indistinguishable from those of R. varians. The syntype series of 'P.' donezianus BORISSIAK and IVANOFF has not been studied but the photographs leave no doubt that the species should be synonymised with R. varians.

Text fig. 180: Radulopecten varians - European distribution.

198

The tigure of 'Hinnites' clypeatus CONTEJEAN is of a right valve unlike that of any 'Hinnites' (= Eopecten) species but with a plical count (27 at H: 20) and metric proportions (4) which suggest that it may be a representative of R. varians.

The affinities of 'P.' Thurmanni CONTEJEAN are discussed under R. vagans.

5. STRATIGRAPHIC RANGE

The earliest zonally defined records of *R. varians* are from the Transversarium zone (U. Oxfordian) of Dorset where the species is common. In the same area it is common in the Cautisnigrae zone (U. Oxfordian). ROEMER'S (1836) specimens are probably from the Decipiens zone. It is doubtful whether 'Oxfordian' records from Switzerland (THURMANN and ÉTALLON, 1862; DF LORIOL, 1893) and France (e. g. DF-CHASEAUX, 1936) include any material from later horizons in the stage.

A few specimens of *R. varians* are known from the L. Kimmeridgian of east and central France (MNO 4293, MNP S04680, S04683, S05068) and one from the west coast (author's collection). The number of specimens involved in DE LORIOL and PELLAT'S (1875) record from the L. Kimmeridgian of the Boulonnais is indeterminate but probably small. It is very doubtful whether DECHASEAUX'S (1936) 'Kimméridgien' record includes any specimens from horizons above the lowest substage.

6. GEOGRAPHIC RANGE

Apart from isolated occurrences in the 'Jurassic' of Poland and Russia (BORISSIAN and IVANOIE, 1917), *R. varians* is entirely restricted to N. W. Europe (text fig. 180).

7. DESCRIPTION OF ECOLOGY

R. varians is first known to be common in the 'Qualicosta' Bed near the base of the Osmington Oolite Series (Transversarium zone) where it reaches a maximum height of 31 mm (author's collection). The sediments are cross-bedded but poorly sorted oobiosparites. The remaining fauna is dominated by Nanogyra (association G of FURSICH, 1977) and all the bivalves are disarticulated. R. varians is not common in the remainder of the series in Dorset, is rare throughout the series in N. Wiltshire, Berkshire, Oxfordshire and Cambridgeshire, where coral rag facies occur (ARKELL, 1931a), and is unknown in Lincolnshire and Norfolk where phyllosilicate clay facies are dominant (BROOKFIFLD, 1973). The equivalent horizon in Yorkshire is largely developed in coral rag facies and is probably the source of the three specimens (BM 34423, L3633, L84564) which constitute the only known records of R. varians from the area (cf. ARKELL, 1931a).

In the 'Trigonia' clavellata Beds of the Gloucester Oolite Series (Cautisnigrae zone) in Dorset, *R. varians* occurs commonly in the Main Shell Bed, where it reaches a maximum height of 28 mm (author's collection), and in the Red Beds. The sediments are more marly than the 'Qualicosta' Bed and have a siderite cement. The fauna is also more diverse (association D of FURSICH, 1977) and the bivalves, of which *Nanogyra* and *Myophorella* are the dominant genera, are occasionally articulated. *R. varians* is apparently absent after the Cautisnigrae zone in Britain.

The species is not known to be common at any horizon in the Oxfordian of continental Europe, although it reaches a height of 33 mm (NM). It is known to be rare in coral reef facies in the Jura (THURMANN and ÉTALLON, 1862; DE LORIOL, 1893).

Rare specimens from the L. Kimmeridgian reach a maximum height of 27 mm (MNO 4293) and are found in association with *R. strictus*.

8. INTERPRETATION OF ECOLOGY

WILSON (1968) has interpreted the shell beds in which R. varians occurs commonly in Dorset as the highest parts of tidal flat regressive sequences, implying thereby that they represent strand-line accumulations of sub-littoral but nearshore organisms. However, TALBOT (1973) considered that they represented offshore environments, albeit within regressive sequences, a conclusion which is supported, at least for the 'T.' clavellata Beds, by FURSICH's (1976, 1977) taphonomic analysis which indicates a stratigraphically condensed but minimally transported fauna living in a moderate energy submarine environment. Taphonomic evidence from the 'Qualicosta' Bed (see Section 7) is less indicative of an in situ fauna so Wilson's interpretation may be applicable to this horizon. The implication is therefore that distance from the shoreline played no part in determining the suitability of an area for colonisation by R. varians. The absence of the species from some clay (e. g. Transversarium zone in E. Anglia) and micrite (e. g. throughout the species range in many areas of S. Europe) sequences and its rarity in others indicates that low energy environments were not suitable for colonisation. The rarity of the species in reef and reef-derived sediments suggests that anything other than level bottom environments were similarly unfavourable.

The Kimmeridgian occurrences of *R. varians* imply a lack of competition with the probable descendant, *R. strictus*. There appears to be no basis for this in terms of thicrohabitat differences (see Section 9 and p. 202).

9. FUNCTIONAL MORPHOLOGY

Since in many morphological respects *R. varians* is identical to *R. vagans* a similar tightly byssate mode of life can be inferred. The comarginal lamellae on the left valve are, however, considerably smaller in *R. varians* so it is doubtful whether they could have served any purpose in gripping a soft substrate, as suggested for *R. vagans*. Hard substrates, such as shells, were probably used for attachment.

10. ORIGINS AND EVOLUTION

The most likely ancestor for *R. varians* is *R. vagans*. Since the first occurrence of the former species is within the geographic range of the latter it may be that speciation was sympatric. The pattern of ornament on the left valve of *R. varians* is essentially a scaled-down version of that of some 'latedeveloping' forms of *R. vagans*. This suggests that transspecific evolution involved heterochronic retardation of the development of size with respect to that of 'shape'. However, since ornamental development in *R. vagans* was almost certainly under 'environmental' control trans-specific evolution must also have involved 'genetic assimilation' (WADDINGTON, 1957). Heterochrony and 'genetic assimilation' are both probably indicative of regulatory gene volution.

There are no significant phyletic changes in *R. varians*. The disappearance of the species from England after the Cautisnigrae zone is probably the result of the widespread development of unfavourable argillaceous facies in the Decipiens zone. A similar development of argillaceous facies throughout Europe in the Kimmeridgian was almost certainly the cause of the extinction of the species early in the stage.

Radulopecten strictus (MUNSTER, 1833) Pl. 10, Figs. 4–6; text figs. 181–183

Synonymy

- v^{*} 1833 Pecten strictus sp. nov; MUNSTER in GOLDFUSS, p. 49, pl. 91, figs. 4a-c.
- 1836 Pecten strictus MUNSTER; ROEMER, p. 69.
- v*p 1850 Pecten Minerva sp. nov; D'ORBIGNY, v. 2, p. 54 (BOULE, 1932, v. 21, p. 11, pl. 2, fig. 1).
 - 1850 Pecten Marcus sp. nov; D'ORBIGNY, v. 2, p. 54 (BOULE, 1932, v. 21, p. 11, pl. 2, fig. 2).
 - ? 1852 Pecten Beaumontinus sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 26–30.
 - 1852 Pecten Dyoniseus sp. nov; BUVIGNIER, p. 24, pl. 19, figs. 26–30.
 - ? 1859 *Pecten Grenieri* sp. nov; CONTEJEAN, p. 311, pl. 23, figs. 7–9.
 - 1860 Pecten strictus MUNSTER; COQUAND, p. 79.
 - 1860 Pecten Marcus D'ORBIGNY; COQUAND, p. 91.
 - ? 1862 Pecten Banneanus sp. nov; Étallon in Thur-MANN and Étallon, p. 259, pl. 36, fig. 12.
 - ? 1862 Pecten Pagnardi sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 259, pl. 36, fig. 12.
 - 1862 *Pecten astartinus* sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 260, pl. 36, fig. 14.
 - 1862 Pecten beaumontinus BUVIGNIER; THURMANN and ÉTALLON, p. 260, pl. 36, fig. 14.
- non 1862 Pecten Grenieri CONTEJEAN; THURMANN and ÉTALLON, p. 265, pl. 37, fig. 7.
 - 1863 Pecten Minerva D'ORBIGNY; DOLLFUS, p. 80, pl. 14, figs. 4–6.
 - 1864 Pecten cf. strictus MUNSTER; V. SEEBACH, p. 98.
 - ? 1867 Pecten solidulus STOPPANI; J. MENEGHINI, p. 162, pl. 28, fig. 12.
 - 1872 Pecten kimmeridgiensis COTTEAU; DE LORIOL et al., p. 381, pl. 22, fig. 4.
 - 1872 Pecten Grenieri CONTEJEAN; DE LORIOL et al., p. 382, pl. 22, figs. 5, 6.
- v*? 1872 Pecten tombecki sp. nov; DE LORIOL in DE LORIOL et al., p. 383, pl. 22, figs. 7–11.
 - ? 1874 Pecten gioenii sp. nov; GEMMELLARO and DI BLASI, p. 119, pl. 3, figs. 5–7.
 - ? 1875 Pecten Gioenii GEMMELLARO and DI BLASI; GEMMELLARO, p. 50.
 - 1875 *Pecten strictus* MUNSTER; DE LORIOL and PELLAT, p. 190, pl. 22, figs. 10, 15.
 - ? 1878 Pecten (Chlamys) Veneris sp. nov; GEMMELLARO and DI BLASI in GEMMELLARO, p. 396, pl. 30, figs. 11, 12.
 - 1881 Pecten strictus MUNSTER; DE LORIOL, p. 90, pl. 12, fig. 11.
- v non 1883 Pecten aff. Grenieri Contejean; Boehm, p. 603, pl. 67, figs. 17, 18.

- v non 1883 Pecten aff. Gioenn GEMMELLARO and DI BLASI; BOEHM, p. 604, pl. 67, figs. 19, 20. 1893 Pecten (Camptonectes) cf. Grenieri CONTEJEAN;
 - FIEBELKORN, p. 399, pl. 14, fig. 11.
 - non 1893 Pecten beaumontinus BUVIGNIER; DE LORIOL, p. 305, pl. 32, fig. 18.
 - v 1893 Pecten Minerva D'ORBIGNY; DE LORIOL and LAMBERT, p. 141, pl. 10, figs. 4–6.
 - v[#] 1893 Pecten sainputeanus sp. nov; DE LORIOL in DE LORIOL and LAMBERT, p. 143, pl. 10, fig. 9.
 - ? 1904 Pecten (Chlamys) Girardoti sp. nov; DF LORIOL, p. 220, pl. 23, fig. 7.
 - ? 1905 Pecten (Camptonectes) insutus sp. nov; CRAGIN, p. 44, pl. 4, figs. 11, 12.
 - v?p 1905 Pecten Minerva D'ORBIGNY; PFRON, p. 220.
 - v? 1905 Pecten beaumontinus BUVIGNIER; PERON, p. 230.
 1905 Pecten kimmeridgiensis COTTEAU; PERON, p. 231.
 - ? 1905 Pecten (Aequipecten) cf. strictus MUNSTER; KILIAN and GUEBHARD, p. 758.
 - ? 1906 Pecten fibratus sp. nov; FUCINI, p. 618, pl. 11, fig. 2.
 - non 1907b Chlamys cf. stricta (MUNSTER); COSSMANN, p. 2, pl. 2, figs. 5, 6.
 - 1917 *Pecten strictus* MUNSTER; BORISSIAK and IVANOFF, p. 48, pl. 3, figs. 1, 3.
 - ? 1921 Chlamys Beaumontina (BUVIGNIER); COSSMANN, p. 6, pl. 1, fig. 1.
 - ? 1931 Pecten (Aequipecten) arachnoideus sp. nov; SOK-OLOV and BODYLEVSKY, p. 61, pl. 4, figs. 10, 11.
 - v 1936 Aequipecten Grenieri (CONTEJEAN); DECHAS-EAUX, p. 52, pl. 8, fig. 7.
- v non 1936 Aequipecten Beaumontinus (BUVIGNIER); DECHAS-EAUX, p. 53, pl. 8, fig. 4.
 - v 1936 Aequipecten Minerva (D'ORBIGNY); DECHAS-EAUX, p. 53, pl. 7, fig. 22, pl. 8, fig. 1.
 - 1936 Aequipecten strictus (MUNSTER); DECHASEAUX, p. 54.
 - 1936 Aequipecten Dionyseus (BUVIGNIER); DECHAS-EAUX, p. 54.
 - v 1936 Acquipecten astartinus (ÉTALLON); DECHASEAUX, p. 55, pl. 8, fig. 5.
 - (?) 1936 Aequipecten kimmeridgiensis (COTTEAU); DE-CHASEAUN, p. 55.
 - 1952 Chlamys minerva (D'ORBIGNY); CHAVAN, p. 35, pl. 2, figs. 12, 13.
 - (?) 1965 Pecten insutus CRAGIN; ALENCASTA DE CSERNA and ESTELA BUITRON, p. 10.

Lectotype of *Pecten strictus* MUNSTER in GOLDFUSS 1835, p. 49, pl. 91, figs. 4a-c designated herein; BSPHG AS VII 636 (figs. 4a and 4b of GOLDFUSS' pl. 91 are probably restored illustrations of this specimen); Pl. 10, Fig. 6 herein; 'Zone of *Pteroceras oceani*' (L. Kimmeridgian), Oelingerberg bei Kappeln, N. Germany. Paralectotypes; BSPHG (3 specimens); also 'Zone of *Pteroceras oceani*', Oelingerberg bei Kappeln.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Pecten testa ovato-orbiculari convexo-plana aequivalvi, lineis radiantibus confertis subaequalibus rectis, striis concentricis subtilissimis vix conspicuis, auriculis inaequalibus lineatis.

E montibus Westphalicis. M. M.

Eyförmig, flach-convex, gleichklappig, mit gedrängten, sehr zahlreichen, feinen und geraden ausstrahlenden Linien,

von welchem emige hier und da etwas dicker erscheinen als die übrigen. Sie sind auch auf den ungleichen Ohren bemerklich, und hier von deutlichen concentrischen Linien durchkreuzt, welche auf der übrigen Schale nur durch Vergrößerung sichtlich werden.

Kommt mit dem vorigen an demselben Fundorte vor."

2. AMENDED DIAGNOSIS

Distinguished from *R. vagans* and *R. varians* by the larger number of radial striae and from the latter also by the smaller number of initial plicae. Distinguished from all other species

Text fig. 181: Radulopecten structus height length.

of *Radulopecten* by the existence of a non-plicate phase early in ontogeny.

3. AMENDED DESCRIPTION

Essentially very similar to *R. varians*. Differing in the maintenance of a sub-ovate form (text fig. 181) to the maximum height of 35 mm (BM unnumbered), in the somewhat higher convexity and slightly smaller byssal notch, in the tendency for the posterior auricles to meet the hinge line at 90°, and in the ornament.

Right valve ornamented with between 73 (MNO) and 110 (BM 25344) radial striae (Pl. 10, Figs. 4, 5); left valve ornamented with between 60 (BM unnumbered) and 75 (MNO) and probably up to 85 (see Section 4) radial striae (Pl. 10, Fig. 6) of which between 5 and 8 and possibly up to 12 (see Section 4) develop into low plicae bearing lamellae at intervals of about 2 mm.

H UA is plotted in text fig. 182.

4. DISCUSSION

The lectotype (herein designated) of 'Pecten' strictus MUNSTER (BSPHIG AS VH 636; Pl. 10, Fig. 6) is a poorly preserved specimen but the existence of closely spaced radial striae leaves no doubt that it is a representative of the species described in Section 3, for which MUNSTER's name is thus the senior synonym. KILINN and GUEBHARD'S (1905) record of unfigured examples of MUNSTER's species from the Bathonian must be treated with caution owing to the unusual stratigraphic horizon (see Section 5). COSSMANN'S (1907b) record of MUNSTER's species is discussed under Chlamys (Cb.) textoria.

One of the two remaining syntypes of '*P.' Minerva*, D'OR BIGNY (MNO 4725) is clearly referable to *Radulopecten stric*-

Text fig. 182: Radulopecten strictus - height umbonal angle.

tus but the other (MNO 4725B) bears more resemblance to the 'coarse' phenotype of *Ch. (Ch.) textoria.* Some of the specimens (MNP) referred to D'ORBIGNY's species by PERON (1905) are undoubtedly examples of *R. strictus* but others are more reminiscent of *R. varians.*

The author has been unable to trace the holotype (M) of 'P.' Marcus D'ORBIGNY but BOULE (1932) has provided a photograph of the specimen which, although poorly preserved, displays the fine radial striae characteristic of R. strictus.

The figure of 'P.' Beaumontinus BUVIGNIER resembles R. strictus but the text specifies an abnormally small number of radial striae (50-60) which are said to be raised into plicae on both the left and right valves. DECHASEAUX (1936) has figured a specimen (NM) which may be a type of BUVIGNIER's species and this, with more than 15 plicae, is clearly an example of R. varians. Specimens referred to BUVIGNIER's species by DE LORIOL (1893) are similarly referable to R. varians and PERON'S (1905) specimens (MNP) appear to have only about 35 striae and thus probably also belong in this species. THUR MANN and ÉTALLON (1862) figure a right valve with 90-100 striae (within the range of R. strictus) under BUVIGNIER'S specific name but also appear to use the same specimen as a basis for the erection of a new species, 'P.' astartinus. Coss-MANN's (1921) 'Chlamys' Beaumontina was said to have 60-70 striae on the right valve and therefore seems to occupy an intermediate position between R. strictus and R. varians.

The figures of 'P.' Dyoniseus BUVIGNIFR closely resemble R. strictus and a specimen in NM which may be a type has metric proportions (1) and number of striae on the right valve (100) within the range of the latter species.

The figure of 'P.' Grenieri CONTEJEAN depicts a specimen with many radial striae, as in R. strictus, but which is however also ornamented with comarginal lamellae, giving a resemblance to Camptonectes (Camptochlamys) obscurus. H/L (2) is within the range of the former species but H/UA is somewhat high. Specimens referred to CONTEJEAN's species by DE LORIOL et al. (1872), FIEBELKORN (1893) and DE-CHASEAUN (1936) are clearly examples of R. strictus but specimens referred to CONTEJEAN's species by THURMANN and ÉTALLON (1862) and BOEHM (1883) have affinities with C. (Cc.) obscurus.

It has proved impossible to trace the original description of 'P.' kimmeridgiensis COTTFAU but PERON (1905), who almost certainly examined the type material, has applied the name to specimens from the Kimmeridgian described as having numerous radial striae, which can thus be safely assumed to be examples of R. strictus. DF LORIOL et al. (1872) figure a right valve under COTTFAU'S name which, with about 90 striae, is indistinguishable from R. strictus. Specimens referred to 'Aequipecten' kimmeridgiensis by DECHASIAUX (1936) were allied with 'Ae.' Grenieri (CONTEJEAN) and 'Ae.' astartinus (ÉTALLON) and are thus very probably conspecific with R. strictus (see above).

Although the syntypes of '*P.*' tombecki DE LORIOL (MNS) have 12 plicae on the left valve the fact that the number of striae (60–70) and H/L (3) is within the range of *R. strictus* suggests that they should be considered to be extreme variants of the latter species.

The original figure of 'P.' gioenit GEMMETLARO and Di BLASI from Sicily depicts a specimen with about 70 striae on the left valve and metric proportions (4) within the range of *R. strictus*. Some doubt must, however, remain over whether *P. gioenii* is synonymous with the latter species owing to the anomalously late stratigraphic horizon (L. Tithonian) and the fact that BOFHM (1883), who may have examined the type material, has referred to GEMMELLARO and DI BLASI's species a specimen (BSPHG) whose continuous comarginal ornament is unlike that of *R. strictus*.

The sole observed type of 'P.' sainputeanus DE LORIOL (MNS B. 03984; Pl. 10, Fig. 4), a right valve, has about 76 radial striae and metric proportions (5) within the range of R. strictus.

The number of plicae on the left valve (7–8) and H/L (6) of the original figure of 'P.' ('Chlamys') Girardoti DE LORIOL does not allow of a separation from R. strictus. The abnormally large number of striae (80) and high H/UA probably represents extreme variation within the latter species. The same can be said of the 85 striae on the left valve and high H/UA (7) of the original figure of 'P.' ('Camptonectes') insutus CRAGIN, a species from the U. Jurassic of Texas whose H/L is inseparable from R. strictus. ALENCASTA DE CSERNA and ESTELA BUTRON'S (1965) unillustrated record of 'P.' insutus from the U. Jurassic of Mexico must be treated with some caution owing to the slight possibility that CRAGIN's species is not synonymous.

'P.' ('Aequipecten') arachnoideus SOROLOV and BODYLEVSKY from Spitzbergen has 70 striae on the left valve and metric proportions (8) of the original figure within the range of R. strictus. However, the stratigraphic horizon (Ryazanian) is anomalously late (see Section 5) and together with the number of striae on the right valve (150) suggests that SOROLOV and BODYLEVSKY's species is probably distinct.

'P.' solidulus STOPPANI; J. MENEGHINI (U. Lias), 'P.' ('Chlamys') Veneris GEMMELLARO and DI BLASI (L. Lias) and 'P.' fibratus FUCINI (L. Lias) are all finely striate forms but their horizons of derivation suggest that they are probably worn specimens of Ch. (Ch.) textoria rather than early representatives of R. strictus. 'P.' fibratus also has an unusually low H/UA (9) although H/L in this species and both H/L and H/UA (10) of 'P.' ('Ch.') Veneris are within the range of R. strictus. STOPPANI's original description of 'P.' solidulus has not been traced.

'P.' Banneanus Étallon and 'P.' Pagnardi Étallon are both discussed under R. varians.

5. STRATIGRAPHIC RANGE

The earliest certain occurrences of *R. strictus* are in the Oxfordian and of these none are undoubtedly earlier than the U. Oxfordian. Pre-Oxfordian occurrences of *R. strictus* may be constituted by four poorly preserved specimens (BM unnumbered; identified with a glyph in text figs. 181, 182) from the Kellaways Rock (Callovian) of Wiltshire and by specimens from the Bathonian (KILIAN and GUÉBHARD, 1905) and Lias (J. MENEGHINI, 1867; GEMMELLARO, 1878; FUCINI, 1906) discussed in Section 4.

The species is locally common in the L. Kimmeridgian but certain U. Kimmeridgian records are restricted to specimens

Text fig. 183: Radulopecten strictus - European distribution.

mentioned in DF LORIOL et al. (1872) and DF LORIOL and PEL-LAT (1875).

Specimens from the L. Tithonian of Sicily (GEMMELLARO and DI BLASI, 1874; GEMMELLARO, 1875) may perhaps be late representatives of R. strictus and there is a slim possibility that specimens from the Ryazanian of Spitzbergen (SOKOTOV and BODYLEVSKY, 1931) may constitute yet later examples of the species (see Section 4).

6. GEOGRAPHIC RANGE

The distribution of *R. strictus* is centred in N. W. Europe (text fig. 183). The only possible occurrences (see Section 4) outside this area are in the L. Tithonian of Sicily (GEMMELEARO and DI BLASI, 1874; GEMMELEARO, 1875) and the U. JURASSIC of Texas (CRAGIN, 1905) and Mexico (ALENCASTA DE CSERNA and ESTELA BUITRON, 1965).

7. DESCRIPTION OF ECOLOGY

R. strictus occurs commonly in condensed oolitic ironstones of the Pseudocordata zone (U. Oxfordian) near Weymouth, Dorset where it reaches a maximum height of 35 mm (BM unnumbered).

In U. Oxfordian sands in Normandy *R. strictus* is a quite common element in a bivalve fauna dominated by *Neomiodon* and cyprinids but in which trigoniids, astartids, tancrediids and corbulids also occur (CHAVAN, 1952).

R. strictus is common in the Calcaire à Astartes (Cymodoce zone), a limestone/marl sequence in the E. Paris Basin. It also appears to be quite common in the Kimmeridgian of Normandy and the Boulonnais but the exact horizon within the clay/phosphate nodule sequence is not clear.

R. strictus is not known to be common in any areas apart from those discussed above.

8. INTERPRETATION OF ECOLOGY

During its short acme *R. strictus* was able to colonise a wide variety of level bottom substrates. Tolerance of a range

of energy levels is suggested by its occurrence in both arenaceous and argillaceous sediments.

The predominance of brackish water forms (HALLAM, 1976) in the U. Oxfordian sands in Normandy indicates that salinities were usually reduced. However, the occurrence of apparently fully marine forms (e. g. trigoniids) suggests that salinities were sometimes normal during deposition of this unit thus the presence of *R. strictus* does not necessarily imply an ability to tolerate reduced salinities.

Assuming that specimens derived from Sicily, Texas and Mexico (see Section 4) are representatives of R. strictus and that therefore the species was able to tolerate waters which were warmer than those of the main range in N. W. Europe the absence of R. strictus from apparently suitable lime-stone/marl facies in southern continental Europe (e. g. the Rhone Basin) is a mystery.

A fairly close Recent morphological analogue of *R. strictus* is *Chlamys (Ch.) nivea* (see TEBBLE, 1976).

9. FUNCTIONAL MORPHOLOGY

Since, in the relevant aspects of morphology *R. strictus* is almost identical to *R. varians*, a similar mode of life, tightly byssate on such hard substrates as shells, can be inferred.

10. ORIGINS AND EVOLUTION

The ancestor of *R. strictus* was almost certainly *R. varuans*. The increase in the number of radial striae and decrease in the number of initial plicae cannot have been caused by heterochrony so change in the structural rather than the regulatory genome is perhaps implied.

Within *R. strictus* eurytopy combined with small size and a possible phyletic reduction in maximum height from the U. Oxfordian (H_{max} : 35) to the L. Kimmeridgian (H_{max} : 28; BM L87356) points to the prevalence of 'r' selection (GOULD, 1977).

No convincing deterministic explanation is available to account for the post L. Kimmeridgian decline of *R. strictus*.

Radulopecten fibrosus (J. SOWERBY 1816)

Pl. 10, Figs. 7-18, 20-22, ?Fig. 24; text figs. 184-192

Synonymy

- v* 1816 Pecten fibrosus sp. nov; J. SOWERBY, p. 84, pl. 136, figs. 1, 2.
- 1822 Pecten sulcatus sp. nov; YOUNG and BIRD, p. 33, pl. 9, fig. 3.
- non 1829 Pecten fibrosus J. SOWERBY; PHILLIPS, pl. 6, fig. 3.
 - 1831 Pecten fibrosus J. SOWERBY, DESHAYES, p. 82, pl. 8, fig. 5.
 - 1833 Pecten fibrosus J. SOWERBY; GOLDFUSS, p. 46, pl. 90, fig. 6.
- 1836 Pecten fibrosus J. SOWERBY; ROEMER, p. 69.
- (?) 1836 Pecten fibrosus J. SOWERBY; LAMARCK, p. 227.
- (?) 1839 Pecten fibrosus J. SOWERBY; BEAN, p. 60.
- v non 1850 Pecten fibrosus J. SOWERBY; D'ORBIGNY, v. 1, p. 341.
- v* 1850 Pecten subfibrosus sp. nov; D'ORBIGNY, p. 373.
- non 1852 Pecten fibrosus α var. nov; BRONN, p. 211.
- 1852 Pecten fibrosus β var. nov; BRONN, p. 211.
- non 1852 Pecten fibrosus J. SOWERBY; QUENSTEDT, p. 507, pl. 40, fig. 47.
- (?) 1858 Pecten fibrosus J. SOWERBY; OPPEL, p. 568.
- ? 1859 *Pecten Thurmanni* sp. nov; CONTEJEAN, p. 315, pl. 23, figs. 10–12.
- non 1860 Pecten fibrosus J. SOWERBY; DAMON, pl. 3, figs. 1, 1a.
 - 1860 Pecten vagans J. DE C. SOWERBY; DAMON, pl. 9, fig. 4 (non J. DE C. SOWERBY sp.).
- (?) 1860 Pecten fibrosus J. SOWERBY; COQUAND, p. 70.
- (?) 1860 Pecten subfibrosus D'ORBIGNY; COQUAND, p. 73.
- 1862 *Pecten subfibrosus* D'ORBIGNY; THURMANN and ÉTALLON, p. 254, pl. 36, fig. 1.
- 1862 Pecten Veziani sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 264, pl. 37, fig. 8.
- 1863 Pecten Midas D'ORBIGNY; DOLLFUS, p. 79, pl. 14, figs. 1–3 (non D'ORBIGNY sp.).
- 1864 Pecten subfibrosus D'ORBIGNY; V. SEEBACH, p. 96.
- (?) 1867 Pecten fibrosus J. SOWERBY; LAUBE, p. 12.
- ? 1872 Pecten Midas D'ORBIGNY; DE LORIOL et al., p. 385 (non D'ORBIGNY sp.).
- 1874 Pecten fibrosus J. SOWERBY; BRAUNS, p. 337.
- ? 1875 *Pecten midas* D'ORBIGNY; DE LORIOL and PELLAT, p. 193 (non D'ORBIGNY sp.).
- non 1880 Pecten fibrosus J. SOWERBY; DAMON, pl. 3, figs. 1, 1a.
 - 1880 Pecten vagans J. DE C. SOWERBY; DAMON, pl. 9, fig. 4 (non J. DE C. SOWERBY sp.).
 - v 1880 Chlamys Midas (d'Orbigny); Damon, pl. 17, fig. 4 (non d'Orbigny sp.).
 - 1882 Pecten subfibrosus D'ORBIGNY; ROEDER, p. 49, pl. 1, figs. 12a–d.
- non 1882 Pecten fibrosus J. SOWERBY; ROEDER, p. 50, pl. 1, figs. 11a, 11b.
 - 1883 Pecten fibrosus J. SOWERBY; LAHUSEN, p. 23, pl. 2, fig. 3.
 - 1893 Chlamys subfibrosa (D'ORBIGNY); SIEMIRADZKI, p. 119.
 - 1894 Pecten subfibrosus D'ORBIGNY; DE LORIOL, p. 45.
- (?) 1897 Pecten subfibrosus D'ORBIGNY; DE LORIOL, p. 127.
- (?) 1900 Pecten subfibrosus D'ORBIGNY; DE LORIOL, p. 126.
- non 1900 Aequipecten fibrosus (J. SOWERBY); E. PHILIPPI, p. 98, fig. 15.
- non 1901 Pecten (Chlamys) subfibrosus D'ORBIGNY; DE LORIOL, p. 106.
- (?) 1904 Pecten subfibrosus D'ORBIGNY; DE LORIOL, p. 227.

- 1904
 Pecten subfibrosиs D'ORBIGNY; ILOVAISKY, p. 251, pl. 8, figs. 14, 15a, 15b.
- (?) 1905 Pecten fibrosus J. SOWERBY; KILIAN and GUÉB-HARD, p. 766.
 - 1911 Pecten subfibrosus D'ORBIGNY; BODEN, p. 192, pl. 8, fig. 1.
 - 1915 Pecten subfibrosus D'ORBIGNY; KRENKEL, p. 299, pl. 26, fig. 23.
 - ? 1915 Pecten (Aequipecten) Triboleti sp. nov; ROLLIER, p. 475, pl. 30, fig. 11.
- v non 1916 Pecten fibrosus J. SOWERBY; DOUVILLE, p. 74, pl. 10, figs. 1a, 1b.
 - 1917 *Pecten subfibrosus* D'ORBIGNY; BORISSIAK and IVANOFF, p. 28, pl. 4, figs. 7, 8, 9a, 9b, 12–14.
 - 1917 *Pecten vagans* J. DE C. SOWERBY; BORISSIAK and IVANOFF, p. 33, pl. 4, fig. 6 (non J. DE C. SOWERBY sp.).
 - 1917 *Pecten Sokolowi* sp. поv; BORISSIAK and IVANOFF, p. 46, pl. 2, figs. 10, 10а.
 - (?) 1925 Pecten fibrosus J. SOWERBY; READ et al., p. 80.
 - v 1926 Aequipecten fibrosus (J. SOWERBY); ARKELL, p. 546, pl. 34, figs. 2-5.
 - v 1931a Chlamys (Aequipecten) fibrosa (J. SOWERBY); Arkell, p. 112, pl. 11, figs. 6–12.
 - v* 1931a Chlamys (Aequipecten) superfibrosa sp. nov; AR-KELL, p. 114, pl. 11, figs. 13-16.
 - pv 1931a *Chlamys (Aequipecten) midas* (D'ORBIGNY); AR-KELL, p. 115, pl. 11, figs. 17–21 (non D'ORBIGNY sp.).
 - 1934 Pecten (Aequipecten) fibrosus J. SOWERBY; STOLL, p. 21, pl. 2, fig. 19.
 - 1934 Pecten (Aequipecten) fibrosus var. duphcostatus var. nov; STOLL, p. 21, pl. 2, figs. 16–18.
 - 1934 Pecten (Aequipecten) tenuicostatus sp. nov; STOLL, p. 22, pl. 2, fig. 20.
 - v 1936 Aequipecten fibrosus (J. SOWERBY); DECHASEAUX, p. 47, pl. 6, figs. 17, 17a; ?pl. 6, figs. 15, 16, 16a (non pl. 6, figs. 18, 18a, 19, 20, pl. 7, figs. 1–3).
 - ? 1936 Aequipecten Thurmanni (CONTEJEAN); DECHAS-EAUX, p. 57.
 - 1936b Chlamys fibrosa (J. SOWERBY); ARKELL, p. 88.
 - 1952 Chlamys (Aequipecten) fibrosa (J. SOWERBY); MAKOWSKI, p. 17.
 - 1952 Chlamys (Radulopecten) fibrosa (J. SOWERBY); CHAVAN, p. 36, pl. 2, fig. 14.
 - ? 1952 Chlamys (Radulopecten) qualicosta (ÉTALLON); CHAVAN, p. 37, pl. 2, fig. 15 (non ÉTALLON sp.).
 - v*? 1956 Chlamys (Radulopecten) drewtonensis sp. nov; NEALE, p. 371, pl. 28, figs. 1–5.
 - (?) 1971 Aequipecten fibrosus (J. SOWERBY); BARBULESCU, p. 227.
 - (?) 1971 Chlamys (Radulopecten) fibrosa (J. SOWERBY); WORSSAM and IVIMEY-СООК, р. 40.
 - pv 1978 *Chlamys (Radulopecten) fibrosa* (J. SOWERBY); DUFF, p. 72, pl. 6, figs. 2, 7–9; text fig. 24.
 - v? 1978 Chlanys (Radulopecten) drewtonensis NEALE; DUFF, p. 208, pl. 6, figs. 3, 4.

Lectotype of *Pecten fibrosus* J. SOWERBY 1816, p. 84, pl. 136, fig. 2 designated ARKELL, 1931a, p. 114; BM 43305 (the original to the left hand figure of J. SOWERBY's pl. 136, fig. 2); Pl. 10, Fig. 21 herein; H: 25, L: 23.5, I_R: 11, UA: 95; Corallian (Oxfordian), Oxford. Paralectotype; BM 43306 (the original to the right hand figure of J. SOWERBY's pl. 136, fig. 2); Pl. 10, Fig. 20 herein; Kellaways Beds (L. Callovian) fide ARKELL (1931a), Chatley, Somerset.

Text fig. 184: Radulopecten fibrosus - European distribution.

Text fig. 185: Radulopecten fibrosus - height/length.

Text tig. 186: Radulopecten fibrosus - height of anterior auricle/length.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Depressed, orbicular, with a rectangular beak, nine or ten broadish diverging grooves and numerous sharp concentric striae; ears equal, rectangular; margin undulated internally.

Rather longer than broad; the back is formed of two straight lines meeting at an angle, sometimes greater, but seldom less than a right angle; the undulations within the margin are regular and rather deep. The striae are composed of small very prominent sharp ridges that hold the shell firmly to the stone in which it lies.

This is remarkable at first sight for its broad and few sulci, and for all the fine undulating transverse striae all over them. I have but seldom seen it in pairs but Mr. STRANGEWAYS has a pair from Carrington, Oxfordshire, and I have an excellent specimen from the Chatley Cornbrash, by favour of T. MFADE, esq. and a small one showing the inside from Oxfordshire. These last two are figured. Mr. MANTELL was so kind as to send me one from North Leach, Gloucestershire, which has only 9 costae, and Mrs. GENT has met with something similar, but plainer at Kellaways; if these should prove to be different species, I shall notice them again.'

2. AMENDED DIAGNOSIS

Distinguished from *R. scarburgensis* by the lack of radial striae, from *R. inequicostatus* by the larger number of plicae, from *R. sigmaringensis* by the lamellose rather than spinose ornament and from all other species of *Radulopecten* by the lack of a non-plicate zone.

3. AMENDED DESCRIPTION

Disc sub-ovate, higher than long, growing allometrically (text fig. 185) to become more orbicular near the maximum height of 43.5 mm (BM L42148). Umbonal angle increasing during ontogeny but relatively invariant at any one size (text fig. 187). Disc flanks low.

Text fig. 187: Radulopecten fibrosus - height/umbonal angle.

Equilateral, inequivalve, low convexity, left valve more convex than right. Intersinal distance greater in left valve than right, increasing with approximate isometry in both (text figs. 188, 189). Byssal notch depth variable, small to moderate.

Auricles well demarcated from disc, variable in size, anterior larger than posterior. All auricles meeting hinge line at about 90°. Anterior auricle of right valve meeting disc at about 90°, remaining auricles meeting disc at an acute angle. All auricles ornamented with closely spaced comarginal striae.

Height of anterior auricle (text fig. 186) and lengths of anterior and posterior auricles (text figs. 190, 191) variable.

Left valve ornamented with between 10 and 13, usually 11, original plicae (text fig. 192), narrower than sulci. Height of plicae variable, usually moderately high in early representatives (e. g. Pl. 10, Fig. 8) but uniformly low in late forms (e. g. Pl. 10, Figs. 13, 16–18). Additional low plicae intercalated during ontogeny of forms with original plicae to give a maximum total number of 27 (BM 35563). Rate of intercalation apparently faster in some of the latest representatives (see Section 7). Forms with low plicae bearing evenly spaced comarginal lamellae on all parts of disc. Comarginal lamellae restricted to plical crests in forms with high plicae.

Right valve usually bearing one less plica than left, with plicae wider than sulci and all parts of disc ornamented with closely spaced comarginl striae.

Shell thickness moderate in early representatives, low in later forms (see Section 7).

4. DISCUSSION

Of the two syntypes of '*Pecten' fibrosus* J. SOWERBY one (BM 43305; Pl. 10, Fig. 21) is seen only from the interior and

the other (BM 43306; Pl. 10, Fig. 20) is poorly preserved. Metric proportions (1) and general shape of the former, designated as lectotype by ARKELL (1931 a), are, however, indistinguishable from the species described in Section 3 and since J. SOWFRBY's name is the earliest available for this species it is known hereinafter as Radulopecten fibrosus. The second syntype (paralectotype) has metric proportions (2) within the range of R. fibrosus and the shape of the auricles confirms that it is a member of the latter species. The superficial similarity of the disc ornament in this specimen to that of R. scarburgensis (Young and BIRD) is presumably the reason for PHILLIPS' (1829) misapplication of J. SOWFRBY's specific name to an example of YOUNG and BIRD's species. Perhaps through following PHILLIPS' rather than J. SOWERBY's usage of 'P.' fibrosus, D'ORBIGNY (1850) applied this name to specimens (MNO 3397) of R. scarburgensis and saw fit to erect a new species, 'P.' subfibrosus, for specimens (MNO 3754; Pl. 10, Fig. 22) which are in fact typical representatives of J. SOWER-BY's species. Other authors (DAMON, 1860, 1880; ROEDER, 1882; DOUVILLE, 1916; DECHASEAUX, 1936, pl. 6, figs. 18, 18a, 19, pl. 7, fig. 1) have also applied J. SOWERBY's specific name to examples of R. scarburgensis so with the evident possibility of misinterpretation of his hypodigm inadequately characterised records of his species in LAMARCK (1836), BEAN (1839), OPPEL (1858), COQUAND (1860), LAUBE (1867), TERQUEM and JOURDY (1869), KILIAN and GUÉBHARD (1905), READ et al. (1925), BARBULESCU (1971) and WORSSAM and IVIMEY-COOK (1971) can only be tentatively synonymised. Although most subsequent usages of 'P.' subfibrosus have been for forms which are undoubtedly within D'ORBIGNY's hypodigm (= R. fibrosus), DF LORIOL (1901) describes under 'P.' ('Chlamys') subfibrosus specimens which are almost certainly representative of R. scarburgensis. Doubt must therefore be cast on the affinities of unfigured specimens referred to D'OR-BIGNY's species by the same author in 1897, 1900 and 1904, although those described in 1894 do appear to belong to *R. fib*rosus. COQUAND'S (1860) record of '*P.' subfibrosus* is accompanied by neither a figure nor a description so it can only be tentatively synonymised. BRONN (1852) followed D'ORBIG-NY'S interpretation of J. SOWERBY'S hypodigm but considered that specimens such as those forming the basis for '*P.' subfib*rosus could only be distinguished at the varietal level. Thus forms belonging to *R. scarburgensis* were referred to as '*P. fibrosus* α and forms belonging to *R. fibrosus* were referred to as '*P.' fibrosus* β . STOLL'S (1934) variety *duplicostatus* is nothing more than the quite common form of *R. fibrosus* in which intercalation of additional plicae has occurred.

Text fig. 188: Radulopecten fibrosus - intersinal distance on left valve/length.

Text fig. 189: Radulopecten fibrosus - intersinal distance on right valve/length.

QUENSTEDT'S (1852) and E. PHILIPPI'S (1900) misapplication of J. SOWERBY'S specific name to specimens of R. vagans is discussed under the latter species. Certain specimens illustrated by DECHASEAUX (1936, pl. 6, fig. 20, pl. 7, figs. 2, 3) under 'Aequipecten' fibrosus may also be referable to R. vagans although the horizon (Oxfordian) suggests that they more probably belong in R. inequicostatus. Specimens illustrated under 'P.' vagans by DAMON (1860, 1880) and BORISSIAK and IVANOFF (1917) are clearly representative of R. fibrosus.

'P.' sulcatus YOUNG and BIRD and P. ('Ae.') tenuicostatus STOLL, both with 11–12 original plicae, are typical early representatives of R. fibrosus. The figured specimen of 'P.' Veztani ÉTALLON (3) and the syntypes of Ch. ('Ae.') superfibrosa ARKELL (OUM J8247–8252; Pl. 10, Figs. 11, 12; 4) are small late representatives with rather extreme depression of the plicae. Large late representatives of R. fibrosus with the characteristic numerous low plicae were incorrectly referred to 'P.' Midas D'ORBIGNY (a junior synonym of Camptonectes (C.) auritus) by DOLLFUS (1863) and this misusage of D'OR-BIGNY's specific name has been perpetuated by DAMON (1880)

Text fig. 190: Radulopecten fibrosus - anterior hinge length/length.

Text fig. 191: Radulopecten fibrosus - posterior hinge length/length.

and ARKELL (1931a). It may therefore be that inadequately characterised specimens referred to D'ORBIGNY'S species in DE LORIOL et al. (1872) and DE LORIOL and PELLAT (1875) are in fact representatives of R. *fibrosus*.

The holotype (OD) of 'Ch.' (R.) drewtonensis NEALE (BM 88737; Pl. 10, Fig. 24) has 13 plicae and most metric proportions (5) within the range of R. fibrosus. However, the byssal notch is abnormally large and may indicate that NEALE's specimen is indeed a member of a different species. Nevertheless the paucity of comparable specimens makes it more likely that 'Ch.' (R.) drewtonensis represents extreme variation within R. fibrosus.

'Ch.' (R.) qualicosta ÉTALLON; CHAVAN has irregular plicae but seems to be nearer *R. fibrosus* than ÉTALLON's species (= *R. varians*).

'P.' ('Ae.') Triboleti ROLLIER was compared with *'P.' fibrosus* but the figured specimen is too poorly preserved to allow confident assignment to any species.

The affinities of '*P.' Thurmanni* CONTEJEAN are discussed under *R. vagans*.

'P.' Sokolowi BORISSIAK and IVANOFF (erected for a form with 13 plicae which is inseparable from *R. fibrosus*) must be rejected as a junior primary hononym of 'P.' Sokolowi RE-TOWSKI (? = Propeamussium (P.) nonarium q. v.).

Text fig. 192: *Radulopecten fibrosus* – frequency distribution for number of plicae on left valve.

5. STRATIGRAPHIC RANGE

There are no unequivocal records of R. *fibrosus* before the Callovian. QUENSTEDT'S (1852) record of 'P.' fibrosus from the Bathonian in fact refers to R. *vagans* while TERQUEM and JOURDY'S (1869) Bathonian record of 'P.' fibrosus is based on unfigured and therefore questionably conspecific specimens (see Section 4). The paralectotype (BM 43306), originally said to be from the Cornbrash (partly Bathonian), is more

probably from the Kellaways Beds (ARKELL, 1931a) and it seems likely that a specimen in the GPIG labelled 'Cornbrash, St. Etienne' is from the L. Callovian (Macrocephalus zone) part of that formation, the horizon at which *R. fibrosus* first occurs in Yorkshire (e. g. YM 592) and Pomerania (STOLL, 1934). In the former area the species is quite common in the Calloviense zone and the M. Callovian Coronatum zone. In the intervening Jason zone a few specimens are known from central England (DUFF, 1978) and *R. fibrosus* seems to be fairly common at this horizon in the Moscow Basin (LAHU-SEN, 1883) and Lithuania (KRENKEL, 1915). The last two authors also cite material from the U. Callovian as do BORISSIAK and IVANOFF (1917) from central Russia and STOLL (1934) from Pomerania. MAKOWSKI'S (1952) record of *R. fibrosus* from the Callovian of Poland is probably from the upper substage.

In the L. Oxfordian definite records from the Mariae zone are restricted to a few specimens from Yorkshire (author's collection). In the Cordatum zone the species is however abundant and widespread, continuing thus through the Plicatilis zone and almost certainly also the Transversarium zone (U. Oxfordian). Specimens from the Normandy coast and Dorset are the only definite record of R. fibrosus in the Cautisnigrae zone; the specimens are nevertheless numerous. Material described by ROEMER (1836) and BRAUNS (1874) from the coralliferous beds of the U. Oxfordian in N. W. Germany may possibly include some specimens from the Cautisnigrae zone since the Middle Coralline Oolite is apparently of this age (ARKELL, 1956: 139). Some of ROEMER's material was derived from the upper 'Coral Rag' which could well be of Decipiens zone age (ARKELL, 1956: 139). These specimens are certainly at least as young as the earliest populations of R. fibrosus with depressed plicae seen in Dorset (see Section 7). Since ROEMER did not consider it appropriate to apply any specific name other than 'P.' fibrosus J. SOWERBY (syntypes with high plicae) to these specimens, it may be that they exhibit the high plicae characteristic of earlier populations. If so there would be clear evidence that forms with low plicae arose by splitting rather than phyletic change and it would be necessary to accord them a separate specific name (cf. p. 11). ROEMER, however mentions specimens with very low plicae in his description of 'P. fibrosus' and it could be that his material from the upper 'Coral Rag' is the source of this comment. Thus, pending examination of the material, the author prefers to adopt the view that the evolution of forms with low plicae took place phyletically and that they should therefore be referred to as R. fibrosus.

R. fibrosus is common and occurs widely in N. W. Europe in the Pseudocordata zone. L. Kimmeridgian records are however restricted to a few specimens from S. England (OUM J2363; BM L19919, L42148, L73018), and specimens from NW. (BM 25921, 33047, LL13479; DOLLFUS, 1863) and E. (THURMANN and ÉTALLON, 1862) France. The latest zonally defined example is from the Cymodoce zone (BM L42148).

6. GEOGRAPHIC RANGE

R. fibrosus was essentially a Boreal species probably because of the widespread development of argillaceous facies (see Section 8) in the Tethyan region. Certain occurrences of the species are restricted to north-west, north, central and north-east Europe (text fig. 184) and are strongly correlated with the development of arenaceous facies. The restriction of the range to E. Europe during the U. Callovian (see Section 5) cannot be explained by a lack of arenaceous facies elsewhere. At least in Yorkshire apparently suitable sediments (Hackness Rock) are well developed. However, in the latter area *R. scarburgensus* is common and it may be that the latter competitively excluded *R. fibrosus* (see Section 8).

The great reduction in population size which apparently occurred in the Cautisnigrae zone has no obvious explanation.

7. DESCRIPTION OF ECOLOGY

R. fibrosus first occurs commonly in the Kellaways Rock (Calloviense zone) of Yorkshire where it reaches a maximum height of 25 mm (author's collection). The sediments are sandstones, partly oolitic, containing a rather low diversity benthic fauna dominated by the bivalves Entolium (E.) corneolum, Pinna, Meleagrinella and Modiolus. A similar sedimentary and faunal association characterises occurrences in the Langdale Beds (Coronatum zone) of the same area and apart from BORISSIAK and IVANOFF'S (1917) record from clav and MAROWSKI's (1952) record, possibly from clay, all occurrences in the Callovian of N. E. Europe (see Section 5) are known to be associated with similar sediments. Elsewhere R. fibrosus is rare in the Callovian although it is widespread in the L. and M. Callovian (see Section 5). A height of 37 mm is attained in the L./M. Callovian of Pomerania (STOLL, 1934). The great majority of Callovian specimens of R. fibrosus have elevated plicae.

in the Oxfordian of Britain specimens with elevated plicae are abundant in the calcareous sandstones of the Cordatum zone (L. Calcareous Grit), where they reach a maximum height of 26.5 mm (SbM), in biosparites of the Plicatilis zone (e. g. 'Trigoma' hudlestoni Bed [Pl. 10, Fig. 15], Shellcum-Pebble Bed), where they reach a maximum height of 36.5 mm (OUM J9060), and in contemporaneous oolites (Hambleton and Malton Oolites). Examples of R. fibrosus with elevated plicae also occur in oolites in the Transversarium zone of Dorset ('Qualicosta' Bed). However, they are outnumbered 3:1 by specimens of R. varians. In marly oolites in the Cautisnigrae zone of the same area (in the 'Trigonia' clavellata Beds) R. fibrosus outnumbers R. varians 2:1, but both species are common. The great majority of specimens of the former species have low, albeit numerous, plicae (e. g. Pl. 10, Figs. 11, 12). The maximum height is 32 mm (author's collection). The associated fauna, as in L. and M. Oxfordian occurrences of R. fibrosus, is dominated by oysters and Myophorella. The fauna of sands in the Pseudocordata zone of Dorset (Sandsfoot Grit) where R. fibrosus is abundant, is dominated by Pinna (association B of FURSICH, 1977) and is very reminiscent of Callovian occurrences of R. fibrosus. The maximum height attained is 39 mm (BM L84954). All specimens have thin shells with low plicae and the intercalary plicae appear to be added at a faster rate compared to earlier representatives (e. g. Pl. 10, Fig. 17, cf. also Figs. 13, 16).

R. strictus may be an associate in L. Kimmeridgian occurrences in France (see Section 5). In this substage *R. fibrosus* reaches a maximum height of 41 mm (BM L73018) in the Baylei zone and 43.5 mm (BM L42148) in the Cymodoce zone. Ornamentation is as in the Pseudocordata zone.

Apart from those instances discussed above *R. fibrosus* is only known to be common in the Cordatum zone of Alsace (ROFDER, 1882) and in the 'Oxfordian' of Normandy (MNO). Other isolated records appear to be mainly derived from coarse-grained sediments and the only occurrences of more than a few specimens in argillaceous facies are in the Nothe Clay (Plicatilis zone) and Clay Band (Cautisnigrae zone) of Dorset (author's collection).

R. fibrosus only occurs commonly with *R. scarburgensis* in the Cordatum zone of Alsace.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that the high energy environment of arenaceous sedimentation was favourable to *R. fibrosus*.

The general rarity of *R. fibrosus* in argillaceous sediments could be due to competitive inferiority to *R. scarburgensis*, which is widespread in such sediments, rather than to an actual dislike of low energy depositional environments. Evidence for the latter view is provided by the local occurrence of numbers of *R. fibrosus* in clay horizons where *R. scarburgensis* is absent (Nothe Clay, Clay Band). The occurrence of numerous examples of *R. fibrosus* together with *R. scarburgensis* in the Cordatum zone of Alsace seems however to argue against any competitive reaction between the species. Nevertheless, it may be that the two species are derived from different horizons within the zone thus a lack of competition is not proven.

Competitive inferiority to *R. varians* is perhaps suggested by the relative rarity of *R. fibrosus* in association with this species in apparently suitable sediments in the Transversarium zone. However it should be borne in mind that the shells have undoubtedly been transported and that the present disparity in numbers may not reflect the original situation. If competition is inferred in the Transversarium zone the common occurrence of both *R. fibrosus* and *R. varians* in the Cautisnigrae zone of Dorset must be taken to imply a subsequent suppression of competition by niche partitioning.

There is little evidence of competition with *R. strictus*, a probable descendant of *R. varians*.

The size and morphology of *R. fibrosus* seems to be unrelated to environment.

9. FUNCTIONAL MORPHOLOGY

Although the byssal notch is sometimes shallow, the small to moderate adult size allows that *R. fibrosus* could have been byssally attached throughout ontogeny. The reduced ornamentation of the right valve is paradigmatic for tight fixation. The depressed plication of the left valve characteristic of later populations of *R. fibrosus* is also paradigmatic for byssal fixation (on hard substrates) but it would have reduced the strength of the shell and consequently its ability to withstand predatory attacks. Since depression of the plicae results in greater streamlining it is additionally paradigmatic for swimming whereby, moreover, it is possible to avoid predation in a way other than by simply offering passive resistance. It may be that later populations of *R. fibrosus* moved into a new niche to avoid competition with *R. varians* and adoption of the free-living mode of life postulated above (contrasting with the byssate mode of life of *R. varians*) may have been the relevant move. In inferring adaptive value for the morphology of later forms of *R. fibrosus* on the basis of the above argument it should be borne in mind that the evidence for competition between *R. fibrosus* and *R. varians* (in the Transversarium zone) is very weak (see Section 8) and that if the species did not compete it cannot be inferred that there was subsequent niche partitioning.

10. ORIGINS AND EVOLUTION

The most likely ancestor for R. *fibrosus* is R. *vagans* and since the first occurrence of the former is within the geographic range of the latter the possibility of sympatric speciation cannot be ruled out. R. *fibrosus* can be viewed as the product of 'genetic assimilation' and heterochronic acceleration in variants of R. *vagans* with 10–13 initial plicae (cf. R. *varians*). Such variants are, however, uncommon so simple regulatory changes, as implied by the above, may not have been the sole cause of evolution.

The lower mean plical height characteristic of Cautisnigrae zone and later populations of *R. fibrosus* is a reflection not only of the loss of forms with elevated plicae but also of the addition of forms with lower plicae than even the most extreme representatives (e. g. Pl. 10, Fig. 10) of earlier populations. Evolution must therefore have involved some addition to the gene pool.

On the basis of a specimen (Pl. 10, Fig. 7) from a loose block with relatively high plicae, the author previously concluded (JOHNSON, 1980) that mean plical height was slightly greater in the Cautisnigrae zone than in the later Pseudocordata zone. A somewhat protracted episode of evolution in R. fibrosus would thus have been evinced (spanning several zones). However, re-examination of the specimen's matrix suggests that it may well be derived from the 'Qualicosta' Bed (Transversarium zone) thus there may have been no change in mean plical height between the Cautisnigrae and Pseudocordata zones. Evidence that evolution in R. fibrosus was indeed compressed into a short period of time is supplied by material from Linton Hill, Abbotsbury, Dorset. Here forms with elevated plicae (recorded as 'Chlamys' fibrosa) were recovered by ARKELL (1936b: 88) from the Sandy Block (uppermost Transversarium zone) while the author has recovered a specimen with low plicae from a horizon only 2m higher (in ARKELL's bed 5).

The fact that the reduction in the plical height of *R. fibrosus* apparently occurred at the very end of the Transversarium zone argues against any idea of change as a response to the (rather earlier) appearance of *R. varians* and thus renders implausible the adaptive explanation advanced in Section 9. The alternative explanation, that change was through genetic drift and involved no increase in the level of adaptation, must be considered reasonable because *R. fibrosus* apparently suffered a population crash (as would promote change through genetic drift) at the time of evolution (see Section 5).

It is possible that the apparent increase in the rate of plical intercalation between the Cautisnigrae and Pseudocordata zones is an illusion created by the larger size of specimens from the latter zone. Even if it is real it is a much less marked change than the slightly earlier reduction in plical height. The reduction in shell thickness in the Pseudocordata zone could well be a product of CaCo₃ dissolution in the porous sandstones of this zone.

Although *R. fibrosus* exhibits an overall phyletic increase in maximum height the pattern of change from 25 mm (L. Callovian; ?37 mm [STOLL, 1934]) to 26.5 mm (L. Oxfordian) to 36.5 mm (M. Oxfordian) to 32 mm (U. Oxfordian, Cautisnigrae zone) to 39 mm (U. Oxfordian, Pseudocordata zone) to 41.5 mm (L. Kimmeridgian, Baylei zone) to 43.5 (L. Kimmeridgian, Cymodoce zone) is somewhat oscillatory.

The decline and extinction of *R. fibrosus* in the Kimmeridgian may relate to the widespread development of argillaceous facies (see Section 8).

Radulopecten scarburgensis (YOUNG and BIRD 1822) Pl. 10, Figs. 23, 25–29, ?Fig. 19, ?Pl. 11, Figs. 1, 3; text figs. 193–200

Synonymy

- 1822 Pecten Scarburgensis sp. nov; YOUNG and BIRD, p. 234, pl. 9, fig. 10.
- 1829 *Pecten fibrosus* J. SOWERBY; PHILLIPS, pl. 6, fig. 3 (non J. SOWERBY sp.).
- v* 1833 Pecten subarmatus sp. nov; MUNSTER in GOLD-FUSS, p. 47, pl. 90, fig. 8.
- v*? 1833 *Pecten subcancellatus* sp. nov; MUNSTER in GOLD-FUSS, p. 47, pl. 90, figs. 9a–c.
 - 1845 Pecten discrepans sp. nov; BROWN, p. 157.
 - v 1850 Pecten fibrosus J. SOWERBY; D'ORBIGNY, v. 1, p. 341 (non J. SOWERBY sp.).
 - 1852 Pecten fibrosus α var. nov; BRONN, p. 211 (non J. SOWERBY sp.).
- v non 1858 Pecten subarmatus MUNSTER; QUENSTEDT, p. 754, pl. 92, figs. 8, 9.
 - 1859 *Pecten Bavoux* sp. nov; CONTEJEAN, p. 316, pl. 23, fig. 6.
 - 1860 *Pecten fibrosus* J. SOWERBY; DAMON, pl. 3, figs. 1, 1a (non J. SOWERBY sp.).
 - 1862 Pecten Laurae sp. nov; ÉTALLON in THURMANN and ÉTALLON, p. 253, pl. 35, fig. 6.
 - 1864 Pecten cf. Laurae ÉTALLON; V. SEEBACH, p. 98.
 - 1878 Pecten subarmatus MUNSTER; DF LORIOL, p. 158, pl. 22, fig. 2.
 - 1880 Pecten fibrosus J. SOWERBY; DAMON, pl. 3, figs. 1, 1a (non J. SOWERBY sp.).
 - 1881 Pecten subarmatus MUNSTER; DE LORIOL, p. 85, pl. 12, figs. 2–4.
 - 1882 Pecten fibrosus J. SOWERBY; ROEDER, p. 50, pl. 1, figs. 11a, 11b (non J. SOWERBY sp.).
 - 1894 *Pecten Laurae* ÉTALLON; DE LORIOL, p. 47, pl. 5, fig. 5, pl. 6, fig. 3.
 - 1897 Pecten Laurae; ÉTALLON; DE LORIOL, p. 127.
 - 1901 Pecten (Chlamys) subfibrosus D'ORBIGNY; DE LORIOL, p. 106 (non D'ORBIGNY Sp.).
 - 1904 *Pecten (Chlamys) Laurae* ÉTALLON; DE LORIOL, p. 218.
 - v 1905 Pecten Laurae ÉTALLON; PERON, p. 216.
 - 1910 Chlamys subarmata (MUNSTER); LISSAJOUS, p. 361, pl. 10, fig. 1.
 - ? 1915 Pecten (Aequipecten) sp. nov; ROLLIER, p. 470, pl. 31, figs. 1a-c.
 - 1915 Pecten (Aequipecten) Catharinae sp. nov; ROL-LIER, p. 472, pl. 30, figs. 8–10.
 - v 1916 Pecten fibrosus J. SOWERBY; DOUVILLÉ, p. 74, pl. 10, figs. 1a, 1b (non J. SOWERBY sp.).

- 1917 Pecten submaequicostatus KASANSKY; BORISSIAK and IVANOEF, p. 40, pl. 2, figs. 2–4.
- 1917 Pecten Laurae ÉTALLON; BORISSIAK and IVANOFF, p. 44, pl. 2, fig. 1.
- 1917 Pecten subarmatus MUNSTER; BORISSIAK and IVANOFF, p. 45, pl. 2, figs. 5, 6.
- ? 1921 Chlamys articulatus (SCHLOTHEIM); NEWTON, p. 395, pl. 11, fig. 7 (non SCHLOTHEIM sp.).
- 1926 Pecten Laurae ÉTALLON; ROMAN, p. 193.
- 1926 Chlamys subarmata (MUNSTER); ROMAN, pp. 194, 196.
- p 1926 Aequipecten subarmatus (MUNSTER); STAESCHE, p. 68.
- (?) 1926 Aequipecten subcancellatus (MUNSTER); STAE-SCHE, p. 70.
 - 1933 Pecten (Aequipecten) aff. subarmatus (MONSTER); DIFTRICH, p. 65, pl. 9, fig. 140.
 - 1935a Chlamys scarburgensis (YOUNG and BIRD); AR-KEIL, p. xiii.
- v*? 1936 Chlamys (Radulopecten) tipperi sp. nov; Cox, p. 18, pl. 1, figs. 1-5.
- v 1936 Aequipecten fibrosus (J. SOWERBY); DECHASEAUX, p. 47, pl. 6, figs. 18, 18a, 19, pl. 7, fig. 1;? pl. 6, figs. 15, 16, 16a; non pl. 6, figs. 17, 17a, 20, pl. 7, figs. 2, 3 (non J. SOWERBY sp.).
- 1936 Aequipecten Laurae (ÉTALLON); DECHASEAUX, p. 49.
- v 1936 Aequipecten cf. Laurae (ÉTALLON); DECHAS-EAUX, pl. 7, figs. 4, 4a, 5, 5a.
- 1939 *Chlamys* cf. *Laurae* (ÉTALLON); STEFANINI, p. 182, pl. 20, figs. 7, 8.
- 1948 Chlamys (Radulopecten) scarburgensis (YOUNG and BIRD); COX and ARKFLL, p. 13.
- v*? 1952 Chlamys (Radulopecten) moondanensis sp. nov; Cox, p. 12, pl. 1, fig. 13, pl. 2, fig. 7.
 - 1958 Chlamys (Radulopecten) scarburgensis (YOUNG and BIRD); R. HUDSON, p. 420.
 - 1965 *Chlamys (Radulopecten?) kinjeleensis* sp. nov; Cox, p. 57, pl. 17, figs. 6a, 6b, 7a, 7b.
 - 1969 Chlamys scarburgensis (YOUNG and BIRD); J. HUDSON and PALFRAMAN, p. 394.
 - 1970 Aequipecten cf. subarmatus (MONSTER); BEHMEL, p. 62.
- pv 1978 *Chlamys (Radulopecten) scarburgensis* (YOUNG and BIRD); DUEF, p. 70, pl. 5, figs. 19, 20, 23, 24, 26, 27, pl. 6, figs. 1, 5, 6.

Neotype of *Pecten Scarburgensis* YOUNG and BIRD 1822, p. 234, pl. 9, fig. 10 designated by DUFF, 1978, p. 71; SM J12398; figured DUFF, 1978, pl. 5, fig. 27; Hackness Rock (U. Callovian), Scarborough, Yorkshire.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Fig. 10 represents the inside of a handsome shell, of a larger size and more oblong shape [than '*P*.' *fibrosus* J. Sow ERBY].from the hard sandstone at the foot of Scarborough Cas-

Text fig. 193: *Radulopecten scarburgensis* – frequency distribution for number of plicae on left valve.

tle. Some specimens are three inches long, but it is very difficult to get any entire. Both valves are convex, and as in No. 12, are closely invested with transverse membranaceous striae, somewhat sharp and rough, crossing both the ribs and the intermediate grooves. There are nine ribs, which are broad and rather flat, but each has an elevated ridge running along the middle of it, surmounted here and there by oblong spines, or sharp scales, crossing the ridge. As this species does not appear to have been hitherto described, we may name it *p. Scarburgensis.*'

2. AMENDED DIAGNOSIS

Distinguished from R. *fibrosus* by the presence of radial striae, from R. *sigmaringensis* by the presence of comarginal lamellae rather than spines, from R. *inequicostatus* by the equality of the initial plicae and from all other species of *Radulopecten* by the lack of a non-plicate zone.

3. AMENDED DESCRIPTION

Essentially similar to *R. fibrosus*, differing by the larger maximum height (92 mm, MNP; possibly 170 mm, see Section 4), more variable umbonal angle (text fig. 195), somewhat greater convexity, and tendency for the right valve to be the more convex, by the more equal-sized auricles and tendency for all the auricles to meet the hinge-line at an acute angle and of the anterior auricle of the right valve to meet the disc at an obtuse angle, by the generally smaller byssal notch and by the ornament of the disc (other metric proportions plotted in text figs. 194, 196–8).

Left valve bearing between 8 and 11 original plicae (text fig. 193), width and height variable both between individuals and in ontogeny. Forms with narrow plicae late in ontogeny adding to number by intercalation (e. g. Pl. 10, Fig. 27). Plicae bearing variably spaced comarginal lamellae; spacing strongly correlated with plical height (e. g. Pl. 10, Fig. 23). Sulci with or without comarginal lamellae; presence strongly correlated with relatively close spacing of plical lamellae (compare Pl. 10, Figs. 28 and 29).

Right valve usually bearing one more plica than left. Closely spaced comarginal striae on both plicae and sulci, sometimes raised into lamellae on the most anterior and posterior of the plicae (Pl. 10, Fig. 26) and on the ventral part of the medial plicae in large specimens. Both valves bearing numerous fine radial striae in the umbonal region.

Shell thickness usually moderate but becoming quite high in large specimens.

4. DISCUSSION

Although the type material of 'pecten' Scarburgensis YOUNG and BIRD appears to have been lost, mention in the original description (see Section 1) of 'nine ribs' can leave little doubt that it was representative of the species described in Section 3 rather than the species with which it was compared ('P.' fibrosus J. SOWERBY). Moreover, the type locality, at the foot of Scarborough Castle, is at a horizon (Hackness Rock) at which the former species is common (see Section 7) but at which the latter appears to be absent. Accordingly the species

Text fig. 194: Radulopecten scarburgensis - height/length.

described in Section 3 is known hereinafter as *Radulopecten* scarburgensis. DUFF (1978) has designated as neotype a left valve (SM J12398) whose plicae are initially high and fairly wide but become relatively low and somewhat narrow later in ontogeny, and whose plical lamellae are fairly widely spaced early in ontogeny and closely spaced later, but continuous across the sulci at all stages of growth.

PHILLIPS (1829) and D'ORBIGNY (1850) misinterpreted J. SOWERBY'S (1816) hypodigm for 'P.' fibrosus and applied this name to specimens of *R. scarburgensis*. Subsequently, numerous authors have similarly misapplied J. SOWERBY'S specific name (see *R. fibrosus* for a fuller discussion). BROWN (1845) realised PHILLIPS' mistake and erected 'P.' discrepans for the latter's figured specimen. D'ORBIGNY'S species 'P.' subfibrosus, erected for forms which are in fact identical to J. SOWERBY'S species, was itself misapplied by DE LORIOL (1901, ?1897, ?1900, ?1904) to specimens of *R. scarburgensis*. The left value of the figured syntype of 'P.' subarmatus MUNSTER (BSPHG AS VII 621; Pl. 10, Fig. 29; 1) has high and moderately wide plicae throughout ontogeny and widely spaced plical lamellae which are not continuous across the sulci. QUENSTEDT (1858) applied MUNSTER's specific name to a specimen (GPIT) which has the conical spines diagnostic of *R. sigmaringensis*. By citing specimens from the Tithonian of S. W. Germany (see Section 5 and p. 217) and including 'P.' ('Aequipecten') Sigmaringensis in his synonymy, STAESCHE (1926) indicates that his concept of 'Ae.' subarmatus included forms which are referable to *R. sigmaringensis* as well as to *R. scarburgensis*.

The sole observed type of 'P.' subcancellatus MUNSTER (BSPHG) is a small left valve (H: 17) with low, narrow plicae and continuous comarginal lamellae. The abnormally small number of plicae (7) and low H/UA (2) may distinguish it from R. scarburgensis.

Text fig. 195: Radulopecten scarburgensis - height/umbonal angle.

Text fig. 196: Radulopecten scarburgensis - intersinal distance on right valve/length.

The figures of 'P.' Bavoux CONTEJEAN (3) and 'P.' Laurae ÉTALLON depict specimens with narrow original plicae and numerous intercalaries.

'P.' ('Ae.') Catharinae ROLLIER was said to be between 'P.' Laurae and 'P.' subarmatus and therefore cannot be accorded a specific distinction in the light of the preceding discussion. 'P.' ('Ae.') sp. nov; ROLLIER was said to be a 'mutation' of 'P.' Laurae. The figured specimen is too poorly preserved for specific determination.

'Chlamys' (R.) tipperi Cox and 'Ch.' (R.) moondanensis Cox were both compared to 'P.' Laurae. The former comes from an anomalously early horizon (Bajocian) for R. scarburgensis and the paratype (BM L63157) has an unusually high H/UA (4). The latter comes from an abnormally late

Text fig. 197: Radulopecten scarburgensis - anterior hinge length/length.

Text fig. 198: Radulopecten scarburgensis - posterior hinge length/length.

horizon (Tithonian) and the paratype (BM L75243; Pl. 11, Fig. 1), a right valve, has rather widely spaced comarginal ornament. This could, however, be due to its exceptional size (H: \approx 170). 'Ch.' (R.) kinjeleensis Cox was compared to 'Ch.' (R.) inaequicostata (= R. inequicostatus herein) but the presence of 10 plicae allies it with R. scarburgensis although the byssal notch is unusually deep for the latter species.

The original description of 'P.' subinaequicostatus KASANSKY has proved impossible to trace but BORISSIAK and IVANOFF'S (1917) specimen figured under this name (5) has 9 plicae and is indistinguishable from R. scarburgensis.

NEWTON'S (1921) figure of 'Ch.' articulatus (SCHLOTHEIM) is much closer to R. scarburgensis than to SCHLOTHEIM'S species (? = R. mequicostatus).

5. STRATIGRAPHIC RANGE

With the exception of a doubtful occurrence in the Bajocian of Iran (Cox, 1936; see Section 4) there are no records of *R. scarburgensis* until the L. Callovian when a few specimens are known from the Kellaways Rock (Calloviense zone) of Yorkshire (BM 11030, YM 605e) and Wiltshire (DUFF, 1978) and from the L. Oxford Clay (Calloviense zone) of Bedfordshire (DUFF, 1978). A specimen from the U. Cornbrash (Macrocephalus zone) of Yorkshire (BM 47431; Pl. 10, Fig. 19) may be a slightly earlier representative of *R. scarburgensis* but the possibility cannot be excluded that it is an extreme variant of *R. fibrosus*. All remaining substagedefined records of *R. scarburgensis* in the Callovian are from the U. Callovian, where the species is locally common (see Section 7).

The species is locally common throughout the Oxfordian but undoubted Kimmeridgian records are limited to three specimens from S. W. Germany (GP1T, BSPHG [2]), and a few from the Jura (CONTEJEAN, 1859; DE LORIOL, 1878, 1881). STEFANINI (1939) records an indeterminate number of specimens from the Oxfordian/Kimmeridgian of Somalia and DIETRICH (1933) records a single specimen from the 'Kimmeridgian/Portlandian' of Tanzania. The species may occur in the Tithonian of Cutch, N. W. India (Cox, 1952; see Section 4).

6. GEOGRAPHIC RANGE

In the Callovian and Oxfordian *R. scarburgensis* was a widespread species in Europe (text fig. 199) and extended along the southern margin of Tethys at least as far as the equator (text fig. 200). Within this region local distribution was largely related to the development of argillaceous facies (see Section 8). The absence of the species from such facies in the Kimmeridgian of N. W. Europe is roughly correlated with its first occurrence at the southerly palaeolatitude of Tanzania (see Section 5) and seems to imply a wholesale southward migration.

7. DESCRIPTION OF ECOLOGY

R. scarburgensis occurs commonly in clays of the Lamberti zone (U. Callovian) in Buckinghamshire (J. HUDSON and PALERAMAN, 1969) in association with a benthic fauna dominated by *Pinna* and *Gryphaea*. The maximum height attained is 50 mm (OUM J9548). The species is also quite common in roughly contemporaneous chamosite oolith-bearing sandstones in Yorkshire (Hackness Rock). YOUNG and BIRD (1822) cite specimens 3'' (76 mm) long from this horizon although the largest known museum specimen (DUFF, 1978) has a length of only 41.5 mm (H: \simeq 48).

In France, *R. scarburgensis* is quite common in the U. Callovian clays of the Dijon area (DM) where a maximum height of 55 mm is attained. Numerous 'Callovian' museum specimens (MNO) from Normandy and Sarthe are almost certainly derived from similar facies and may well be contemporaneous. The maximum height is 76 mm. Although not common *R. scarburgensus* also occurs in argillaceous facies in the U. Callovian of Dorset (BM unnumbered), E. Spain (BFHMFL, 1970), central Russia (BORISSIAK and IVANOFF, 1917) and S. Israel (R. HUDSON, 1958). Other Callovian records are limited to two specimens (BM LL30877-8) from muddy sand-stones in Portugal, an indeterminate number of specimens,

Text fig. 199: Radulopecten scarburgensis - European distribution.

Text fig. 200: Radulopecten scarburgensis - World distribution (Callovian reconstruction).

probably from similar facies, in the Caucasus (BORISSIAK and IVANOFF, 1917) and the few specimens from the lowest substage mentioned in Section 5.

The great majority of Callovian examples of *R. scarburgensis* have initially high original plicae which subsequently undergo an allometric reduction in height such that the comarginal lamellae on the left valve, after being widely spaced early in ontogeny, become relatively closely spaced. The original plicae are usually fairly wide throughout ontogeny so that development of intercalary plicae is not common. Pl. 10, Fig. 28 illustrates a typical specimen.

In the L. Oxfordian R. scarburgensis occurs quite commonly in the 'Terrain à Chailles' of Alsace (ROEDER, 1882) and the Yonne (PERON, 1905). The species also occurs commonly in the marls and marly limestones of the 'Oxfordien Supérieur et Moyen' of the Ledonian Jura (DE LORIOL, 1904) and in similar facies at an unspecified horizon in the Oxfordian of Sinai (DOUVILLE, 1916). Museum specimens (NM) from the coral-rich U. Oxfordian sediments of Meurthe and Moselle are fairly common and reach a maximum height of 90 mm. Museum specimens (MNP) from similar facies in the U. Oxfordian of the Yonne are also not uncommon and reach a maximum height of 92 mm. R. scarburgensis does not appear to be common elsewhere in the Oxfordian. Specimens from the coral-rich L. Oxfordian of the Bernese Jura (DE LORIOL, 1894), from coralliferous limestones and marls in the U. Oxfordian of the Rhone (LISSAJOUS, 1910; ROMAN, 1926) and from clays of the L. Oxfordian in central England (BM LL7546) constitute the only other records where facies are known.

A high proportion of Oxfordian specimens of *R. scarburgensis* have initially low plicae but plical height usually increases isometrically (e. g. Pl. 10, Fig. 27) as it also does in specimens with initially high plicae. Consequently forms with initially widely spaced and forms with initially closely spaced comarginal lamellae are both well represented but forms with closely spaced lamellae late in ontogeny are quite rare. A fairly high proportion of specimens have narrow orig-

inal plicae late in ontogeny so development of intercalary plicae is quite frequent (e. g. Pl. 10, Fig. 27).

All of the relatively few European Kimmeridgian records (see Section 5) excepting CONTEJEAN'S (1859) single specimen (from coral/*Diceras* facies) are derived from argillaceous sediments. The pattern of ornamental variation is much the same as in the Oxfordian except that forms whose plicae undergo an allometric reduction in height (and which consequently have closely spaced lamellae late in ontogeny) are apparently absent. Pl. 10, Fig. 29 illustrates a Kimmeridgian specimen.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that the low energy environment of argillaceous sedimentation was favourable for *R. scarburgensis*. The species could not, however, tolerate low energy conditions where accompanied by reduced oxygen tension (e. g. L. Oxford Clay of England).

The isolated occurrence of numerous specimens of *R. scarburgensis* in arenaceous sediments in the U. Callovian of Yorkshire indicates that high energy environments could be tolerated and this seems to be emphasised by the fairly common occurrence and large size of specimens in the coralrich U. Oxfordian of the Yonne and Meurthe and Moselle. In the latter cases, however, the micritic matrix of museum specimens suggests that the species may have colonised low energy inter-reef lime muds.

Chlamys septemradiata, a Recent free-living species which inhabits deep water muds in the First of Clyde (J. ALLEN, 1953), is a close morphological analogue of *R. scarburgensis*.

9. FUNCTIONAL MORPHOLOGY

The small byssal notch and equal auricles of most specimens of *R. scarburgensis* imply abandonment of byssal fixation in favour of reclining at an early age. Even in forms with a moderately deep byssal notch it is very doubtful whether attachment was maintained to heights anywhere near the maximum. All examples of the Recent analogue *Ch. septem-radiata* observed by the author, including specimens as small as H: 30, were free living.

Ontogenetic increase in umbonal angle is paradigmatic for prolonging swimming ability, presumably as a means of escaping predators. Shell thickening in large specimens is nonparadigmatic but may represent a switch to a 'siege' policy towards predators late in life.

The lack of comarginal lamellae on the medial plicae of the right valve at all but the latest ontogenetic stages could be due to inhibited growth through contact with the substrate (STAESCHE, 1926) but is more probably due to swimming activity (see above) leading to abrasion.

10. ORIGINS AND EVOLUTION

The most likely ancestor for *R. scarburgensis* is *R. vagans*. The important changes in morphology, the early development and relatively invariant number of initial plicae, could have been brought about by heterochronic acceleration and 'genetic assimilation' (WADDINGTON, 1957) so modifications of the regulatory system may underlie the greater part of trans-specific evolution.

There is no reason to suppose that the stratigraphic change in the mean form of the ornament of *R. scarburgensis* (see Section 7) is anything other than an evolutionary phenomenon. Since there appears to be no addition to the range of ornamental variation the change in mean form could have resulted purely from selection (i. e. without addition to the gene pool). The reason for this phyletic evolution is not apparent.

The maximum height of available museum specimens increases from the Callovian (76 mm) to the Oxfordian (92 mm). The Kimmeridgian value (59 mm; BSPHG AS VII 621) is derived from a very small sample (see Section 5) and therefore does not necessarily imply reversal of a phyletic trend towards greater size. Possibly conspecific specimens from the Tithonian (see Section 4) have a maximum height of 170 mm.

Although the Kimmeridgian decline of R. scarburgensis is contemporaneous with the first records of R. sigmaringensis there is no reason to suppose that the former was outcompeted by the latter as R. sigmaringensis is a very rare species in the Kimmeridgian.

Radulopecten sigmaringensis (ROLLIER 1915) Pl. 11, Figs. 5, 6; text figs. 201, 202

Synonymy

- v 1858 Pecten subarmatus MUNSTER; QUENSTEDT, p. 754, pl. 72, figs. 8, 9 (non MUNSTER sp.).
- v^{*} 1915 Pecten (Acquipecten) Sigmaringensis sp. nov; ROLLIER, p. 474.
- p 1926 Aequipecten subarmatus (MUNSTER); STAESCHE, p. 68 (non MUNSTER sp.).

Holotype (M) of *Pecten (Aequipecten) Sigmaringensis* ROLLIER 1915, p. 474; GPIT 4-72-8; figured QUENSTEDT, 1858, pl. 72, figs. 8, 9; Pl. t1, Fig. 6 herein; H: 27.5, L: 24, HAA: 5.5, AH: 7, PH: 7, I_R: 13, N: 1, PL: 12, UA: 92; Malm ζ (L./M. Tithonian), Jungnau, S. W. Germany.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Le 'P.' subarmatus figuré par QUENSTEDT, JURA (1858), p. 754, 758, t. 92, f. 8–9, du Danubien infér. (W. Jura ζ) des environs de Sigmaringen (Hohrain) ne répond plus du tout à l'espece du Crussolien, elle est beaucoup plus aigü (angle apical 88°) sans costules intermédiaires, et portant des écailles coniques, pointues. Je propose de l'appeler P. (Ae.) Sigmaringensis sp. nov. i. f. QU. P. subarmatus, non GOLDE.'

2. AMENDED DIAGNOSIS

Distinguished from all other species of *Radulopecten* by the spinose rather than lamellose ornament on the plicae.

Text fig. 201: Radulopecten sigmaringensis - height/length.

3. AMENDED DESCRIPTION

Essentially very similar to *R. scarburgensis*, differing only by the diagnostic feature (see Section 2; Pl. 11, Fig. 5), by the invariant number of original plicae (LV: 11, RV: 12), by the rarity of intercalary plicae and by the smaller maximum size (L_{max} : 68; GPIT). H/L and H/UA are plotted in text figs. 201, 202.

4. DISCUSSION

A number of examples of the species described in Section 3 in the GPIT are wrongly labelled *Pecten subarmatus* MUNS-TER (= *Radulopecten scarburgensis*), including the specimen (Pl. 11, Fig. 6; 1) figured by QUENSTEDT (1858). The latter formed the basis for '*P*.' ('*Aequipecten*') *Sigmaringensis* ROL-LIFR and becomes ipso facto the holotype (M).

STAESCHE'S (1926) record of 'Ae.' subarmatus is discussed under R. scarburgensis.

Text fig. 202: Radulopecten sigmaringensis - height/umbonal angle.

5. STRATIGRAPHIC RANGE

Three specimens (GPIT) from the Malm ϵ (Kimmeridgian) constitute the earliest records of *R. sigmaringensis*. All other records are from the Malm ζ (L./M. Tithonian) apart from a single specimen (MNS) from the 'Portlandian' (U. Tithonian).

6. GEOGRAPHIC RANGE

All records of *R. sigmaringensis* are from S. W. Germany except for the single U. Tithonian specimen which is from Nantua (French Jura).

7. DESCRIPTION OF ECOLOGY

Four of the twelve 'Malm ξ ' specimens (GPIT[11], BM; see Section 5) are also labelled 'Zementmergel' and by the similarity of the matrix it seems probable that the remaining specimens are likewise derived from this formation, a L. Tithonian marl sequence.

Specimens from the Kimmeridgian and U. Tithonian are derived from marly limestones.

8. INTERPRETATION OF ECOLOGY

The fine-grained sediments in which *R. sigmaringensis* is found probably afforded a soft substrate at the time of deposition.

9. FUNCTIONAL MORPHOLOGY

Since *R. sigmaringensis* is morphologically almost identical to *R. scarburgensis* a similar reclining mode of life after a brief byssate phase can be inferred.

The function, if any, of the plical spines of *R. sigmanngensis* is, like the plical lamellae of *R. scarburgensis*, unclear.

The fuller development on the left valve and small size of both spines and lamellae rules out any possibility that they might represent a 'snow-shoe' adaptation to the soft substrates occupied by *R. sigmaringensis* and *R. scarburgensis*.

10. ORIGINS AND EVOLUTION

R. sigmaringensis almost certainly arose from *R. scarburgensis* and since the former species is first known within the geographic range of the latter the possibility of sympatric speciation cannot be ruled out. The development of spines rather than lamellae cannot be explained by heterochrony so trans-specific evolution probably involved some change in the structural genome.

The few available specimens (16) give no indication of any phyletic trends in *R. sigmaringensis*. The largest specimen (L: 68; GPIT) is from the L. Tithonian.

Radulopecten inequicostatus (YOUNG and BIRD 1822) Pl. 11, Figs. 2, 4, 7–9; text figs. 203–213

Synonymy

? 1820	Pectinites articulatus sp. nov; SCHLOTHEIM, p. 227.
1822	Pecten inequicostatus sp. nov; YOUNG and BIRD,
	p. 235, pl. 9, fig. 7.
1829	Pecten inaequicostata sp. nov; PHILLIPS, p. 129,
	pl. 4, fig. 40.

v non 1833 Pecten articulatus (SCHLOTHEIM); GOLDFUSS, p. 47, pl. 90, fig. 10.

1836 Pecten octocostatus sp. nov; ROEMER, p. 69, pl. 3, fig. 18.

Text fig. 203: Radulopecten inequicostatus - height/length.

Pecten septemcostatus sp. nov; ROEMER, p. 212. ? 1839 Pecten inaequicostata PHILLIPS; BEAN, p. 60. v*1850 Pecten corallinus sp. nov; D'ORBIGNY, v. 2, p. 22 (BOULE, 1929, v. 18, p. 172, pl. 19, fig. 18). ? 1852 Pecten biplex sp. nov; BUVIGNIER, p. 23, pl. 19, figs. 1-6. non 1853 Pecten articulatus (SCHLOTHEIM); MORRIS and

1839

- LYCETT, p. 32, pl. 33, fig. 12. non 1853
- Pecten articulatus (SCHLOTHEIM); CHAPUIS and DEWALQUE, p. 212, pl. 29, fig. 3.
- v поп 1858 Pecten articulatus (SCHLOTHEIM); QUENSTEDT, p. 754, pl. 92, fig. 11.
 - 1860 Pecten corallinus D'ORBIGNY; COQUAND, p. 79.
 - 1862 Pecten octocostatus ROEMER; THURMANN and ÉTALLON, p. 252, pl. 35, fig. 7.
 - non 1862 Pecten articulatus (SCHLOTHEIM); THURMANN and ÉTALLON, p. 255, pl. 36, fig. 2.
 - Pecten semiplicatus sp. nov; THURMANN and ? 1862 ÉTALLON, p. 261, pl. 36, fig. 17.
 - Pecten inaequicostatus PHILLIPS; LYCETT, p. 32, 1863 pl. 33, fig. 1 (non fig. 1a).
 - 1864 Pecten inaequicostatus PHILLIPS; V. SEEBACH, p. 97.

- 1866 Pecten maequicostatus PHILLIPS; OPPEL, p. 290. 1872 Pecten maequicostatus PHILLIPS; DE LORIOL et al., p. 388.
- 1881 Pecten inaequicostatus PHILLIPS; DE LORIOL, p. 87, pl. 12.
- ? 1883 Pecten maequicostatus PHILLIPS; LAHUSEN, p. 22, pl. 1, figs. 15, 16.
 - 1893 Chlamys (Pecten) inaequicostata (PHILLIPS); SIEMIRADZKI, p. 118.
 - 1893 Pecten inaequicostatus PHILLIPS; DE LORIOL, p. 301, pl. 32, figs. 13-15.
 - 1893 Pecten Ursannensis sp. nov; DE LORIOL, p. 311, pl. 33, figs. 5-7.
 - 1894 Pecten inacquicostatus PHILLIPS; DE LORIOL, p. 44.
- 1895 Pecten Neckeri sp. nov; DE LORIOL, p. 43, pl. 10, fig. 5.
- ? 1896 Pecten inaequicostatus PHILLIPS; SEMENOW, p. 63. non 1898 Pecten articulatus (SCHLOTHEIM); GREPPIN, p. 128.
 - v 1905 Pecten inaequicostatus PHILLIPS; PERON, p. 218.
 - ? 1905 Pecten (Aequipecten) octocostatus ROEMER; KILIAN and GUÉBHARD, p. 766.
 - ? 1905 Pecten (Aequipecten) cf. inaequicostatus PHILLIPS; KILIAN and GUÉBHARD, p. 805.
- ? 1915 Pecten sp. (inaequicostatus PHILLIPS?); KRENKEL, p. 297.
- ? 1915 Pecten sp. (sp. nova?); KRENKEL, p. 298.
- v^{*} non 1916 Chlamys articulata var. notgroviensis var. nov; PARIS and RICHARDSON, p. 525, pl. 45, fig. 2.
- Chlamys articulata var. sauzeana var. nov; PARIS v[#] non 1916 and RICHARDSON, p. 526, pl. 45, figs. 3a, 3b.

non 1920 Pecten articulatus (SCHLOTHEIM); FAURE-MAR-GUERIT, p. 59.

- Pecten articulatus (SCHLOTHEIM) var. passant à поп 1920 Pecten anastomoplicus GEMMELLARO and DI BLASI; FAURE-MARGUERIT, p. 59.
 - ? 1925 Pecten cf. maequicostatus PHILLIPS; READ et al., p. 81.
 - 1926 Chlamys inaequicostata (PHILLIPS); ROMAN, p. 194.
 - Aequipecten inaequicostatus (PHILLIPS); ARKELL, v 1926 p. 545, pl. 34, fig. 1.
 - Chlamys (Radulopecten) inaequicostatus (PHILv 1931a LIPS); ARKELL, p. 118, (1930a) pl. 8, figs. 4-7.
 - 1935a Chlamys inequicostata (YOUNG and BIRD); AR-KELL, p. xiv.
 - 1935a Chlamys (Aequipecten) sp; Cox, p. 177, pl. 23, fig. 8.

- 1936a Chlamys (Radulopecten) inequicostata (YOUNG and BIRD); ARKELL, pl. 52, figs. 1, 3.
- ? 1936 Aequipecten biplex (BUVIGNIER); DECHASEAUX, p. 150.
- 1936 Aequipecten inaequicostatus (PHILLIPS); DECHAS-EAUX, p. 51, pl. 7, fig. 6.
- Aequipecten ursannensis (DE LORIOL); DECHAS-1936 EAUX, p. 57, pl. 8, fig. 7.
- ? 1936 Aequipecten semiplicatus (ÉTALLON); DECHAS-EAUX, p. 58.
- Chlamys (Radulopecten) cf. inaequicostata (PHIL-1958 LIPS); R. HUDSON, p. 423.
- ? 1959 Chlamys (Radulopecten) nagatakensis KURATA and KIMURA; TAMURA, p. 58, pl. 6, figs. 31, 32.
- 1965 Chlamys (Radulopecten) inaequicostata (PHIL-LIPS); COX, p. 59, pl. 7, fig. 6.
- 1971 Chlamys (Radulopecten) inaequicostata (PHIL-LIPS); WORSSAM and IVIMEY-COOK, p. 40.

Neotype of Pecten inequicostatus YOUNG and BIRD 1822, p. 235, pl. 9, fig. 7 designated herein; BM 23173; Pl. 11, Fig. 8 herein; Corallian (Oxfordian), Malton, Yorkshire.

Text fig. 204: Radulopecten inequicostatus - height/umbonal angle.

1. ORIGINAL DIAGNOSIS AND DESCRIPTION

'Nos. 2 and 7 are of that class of pectens which have a crooked appearance, leaning or bending to one side...

No. 7, similar in shape [to 'p.' Roseburiensis and 'p.' plagiostomus], is from the oolite. It has seven or eight ribs, of which those in the middle are vastly larger than those on either side. If it is not the p. flavicans, we might name it p. inequicostatus.

2. AMENDED DIAGNOSIS

Distinguished from all other species of Radulopecten by the inequality of the initial plicae.

3. AMENDED DESCRIPTION

Essentially very similar to R. vagans. Differing by the diagnostic feature (see Section 2); by the consistently early

Text fig. 205: Radulopecten inequicostatus - depth of byssal notch/length.

Text fig. 206: Radulopecten inequicostatus - height of anterior auricle/length.

development of plicae, relatively invariant number of initial plicae (5–9; text fig. 211) and rarity of intercalary plicae; by the consistently wide spacing of the plical lamellae on the left valve and lack of lamellae on the right valve, even in large specimens (Pl. 11, Fig. 9); by the greater convexity, thicker shell (Pl. 11, Fig. 4) and more common attainment of a large size (see Section 7; H_{max} : 75; MNP); by the ontogenetic decrease in H/L (text fig. 203) and by the marked ontogenetic increase in umbonal angle and larger mean H/UA (text fig. 204). Other metric proportions are plotted in text figs. 205–210.

Although the plicae are of unequal size in any individual the pattern of variation is relatively consistent between individuals, with the medial and antero-medial plicae usually the widest.

4. DISCUSSION

Most authors have applied PHILLIPS (1829) name *inae-quicostatus* to the species described in Section 3. However, ARKELL (1935a) pointed out that YOUNG and BIRD (1822) de-

scribed and figured an undoubted example of the species described in Section 3 under 'pecten' inequicostatus and that this name should therefore be the senior synonym. YOUNG and BIRD's specimen is without doubt lost so a neotype (BM 23173; Pl. 11, Fig. 8) is herein designated.

A figured specimen assigned to 'P.' inaequicostatus PHIL-LIPS by LAHUSEN (1883) is derived from an unusually early horizon (Callovian; see Section 5) and has 12 plicae and abnormally low values of HAA/L and N/L (1). It more probably belongs to Radulopecten scarburgensis. In view of the possibility of confusion for R. scarburgensis unfigured Callovian specimens either assigned to (BEAN, 1839; LYCETT, 1863; SEMENOW, 1896) or compared with (KRENKEL, 1915; READ et al., 1925) PHILLIPS's species can only be tentatively accepted as representatives of R. inequicostatus. LYCETT's (1863) misuse of Phillips's specific name for a L. Callovian specimen of R. vagans is discussed under the latter species. KILIAN and GUÉBHARD'S (1905) record of 'P.' ('Aequipecten') cf. inaequicostatus from the 'U. Kimmeridgian - L. Portlandian' can only be tentatively synonymised in view of the exceptionally late stratigraphic horizon and lack of a figure.

Text fig. 207: Radulopecten inequicostatus - intersinal distance on left valve/length.

Text fig. 208: Radulopecten inequicostatus - intersinal distance on right valve/length.

The figure of 'P.' biplex BUVIGNIER (2) depicts a specimen which is in many respects similar to R. inequicostatus but which appears to possess the intercalary plicae more characteristic of R. vagans. DECHASEAUX (1936), who may have had access to the specimen, has allied BUVIGNIER's species with 'Aequipecten' inaequicostatus (PHILLIPS). The latter author allied ÉTALLON's species 'P.' semiplicatus with 'Ae.' vagans but the original description specifies its closeness to ROEMER's (1836) species 'P.' octocostatus (emend. septemcostatus 1839), an undoubted synonym of *R. inequicostatus*. KILIAN and GUÉBHARD'S (1905) unillustrated record of '*P.*' ('*Ae.*') octocostatus from the Callovian can only be tentatively synonymised owing to the possibility of confusion for *R. scarburgensis* (see above).

The figures of 'P.' Neckeri DE LORIOL and 'P.' Ursannensis DE LORIOL both depict specimens with 6 plicae and metric proportions of the former (3) are indistinguishable from R. inequicostatus. H/UA of the latter (4) is abnormally low

Text fig. 209: Radulopecten inequicostatus - anterior hinge length/length.

Text fig. 210: Radulopecten inequicostatus - posterior hinge length/length.

222

but this could be due to inaccurate drawing and is no basis for a specific separation.

The ornament of the remaining syntypes of 'P.' corallinus D'ORBIGNY (MNO 4290, 4290B) is indistinguishable from *R. inequicostatus*. The exceptionally high HAA/L and PH/L (5) of MNO 4290 is herein considered to represent extreme variation within *R. inequicostatus*.

The author has been unable to trace the original description of 'Chlamys' (R.) nagatakensis KURATA and KIMURA. TAM-URA's (1959) use of the name is for a specimen from Japan said to differ from 'Ch.' (R.) inaequicostata (PHILLIPS) only by the presence of striae on the plicae. Since this is in fact a feature of well preserved examples of PHILLIPS's species (= R. inequicostatus) TAMURA's specimen may well be conspecific and KURATA and KIMURA's species synonymous with R. inequicostatus.

Cox (1935a) compared a specimen from Somalia with PHIL-LIPS' species. The illustration leaves little doubt that it is an example of *R. inequicostatus.*

The affinities of '*Pectinites*' articulatus SCHLOTHEIM and subsequent references thereto are discussed under *Ch. (Ch.) textoria.* Should it turn out that SCHLOTHEIM's type material is in fact representative of the species described in Section 3 an application to the ICZN for suppression of '*Pe.' articulatus* might be considered in the interests of stable nomenclature.

5. STRATIGRAPHIC RANGE

Four specimens (GP1T; Pl. 11, Fig. 2) from the Great Oolite (Bathonian) constitute the earliest records of R. *inequicostatus*. Certain Callovian records are restricted to two rather poorly preserved specimens (YM 592f, BM L21817) from the U. Cornbrash of Yorkshire. BRIGHTON (pers. comm. in Cox and ARKELL, 1948: 13) has shown that LYCETT's (1863) figured specimen of 'P.' *inaequicostatus* PHILLIPS, supposedly from the U. Cornbrash of Yorkshire, is in fact derived from the Oxfordian. Doubtfully conspecific specimens from the Callovian either referred to or compared with species which are synonymous with *R. inequicostatus* are discussed in Section 4.

Text fig. 211: Radulopecten inequicostatus – frequency distribution for number of plicae on left valve.

Two specimens from the 'Rauracien Inférieur' of the Swiss Jura (DF LORIOL, 1894) constitute the only certain records from the L. Oxfordian but *R. inequicostatus* is locally abundant in the M. and U. Oxfordian (see Section 7).

Certain Kimmeridgian records are restricted to the eastern Jura (DE LORIOL, 1881) and to the southern and eastern parts of the Paris Basin (MNP; DECHASFAUX, 1936). *R. inequicostatus* is recorded from the Oxfordian/Kimmeridgian of Haute Marne (DE LORIOL et al., 1872), Charente Maritime (COQUAND, 1860) and Poland (SIFMIRADZKI, 1893).

There are no certain records of *R. inequicostatus* after the Kimmeridgian. A Tithonian specimen referred to '*P.*' ('*Ae-quipecten*') cf. *inaequicostatus* PHILLIPS by KILIAN and GUEBHARD (1905) is discussed in Section 4.

6. GEOGRAPHIC RANGE

Within Europe (text fig. 212) common occurrences of R. inequicostatus are strongly correlated with the development of coral reef facies (see Section 7). However, within such facies there appears to be a northward diminution in numbers, probably due to a temperature restriction. Compared with its abundance in reef facies in France and Switzerland R. inequicostatus is rare in reefal and peri-reefal sediments in Yorkshire. Only 12 museum specimens (YM 204, 559[2]; BM 23173, 23347, 23359, 23363, 47148[2]; SbM P141, P149; SM) are known and intensive field work by the author has brought to light only two more somewhat questionable examples.

Text fig. 212: Radulopecten inequicostatus - European distribution.

Text fig. 213: Radulopecten inequicostatus - World distribution (Callovian reconstruction).

To the south of Europe (text fig. 213) *R. mequicostatus* is known as far away as E. Africa (Cox, 1935a, 1965) and to the east it may extend to Japan (see Section 4).

7. DESCRIPTION OF ECOLOGY

R. mequicostatus is reported (PERON, 1905) to be the most abundant pectinid in the Oxfordian of the Yonne region and to be entirely restricted to the coral reef facies, where it reaches a maximum height of 75 mm (MNP). The associated fauna is described on p. 88. The species is likewise common (reaching a maximum height of 65 mm) in the Oxfordian coral reef facies in the Swiss Jura (DF LORIOL, 1893) and the coral-rich U. Oxfordian sediments of Meurthe and Moselle have also yielded numerous specimens (NM; H_{max}: 54). R. inequicostatus is not known to be common elsewhere in the Oxfordian but with the exception of solitary specimens cited by DE LORIOL (1895) and COX (1935a) all records (text figs. 212, 213) are associated with corals, or coral-dwelling, or facultatively coral-dwelling pectinids (see p. 88). Most, if not all, of the Kimmeridgian and Oxfordian/Kimmeridgian records (see Section 5) are similarly associated.

8. INTERPRETATION OF ECOLOGY

It is clear from Section 7 that for at least part of its life history R. *inequicostatus* was heavily reliant on corals in some way. The absence of the species from apparently suitable coral-rich sediments in the L. Kimmeridgian of Montbéliard (CONTEJEAN, 1859) is at present inexplicable.

There is no evidence of competition with *Chlamys (Ch.) textoria*, a species which in reefs probably occupied the same microhabitats as at least juveniles of R. *inequicostatus* (see Section 9).

9. FUNCTIONAL MORPHOLOGY

Like the Spondylopecten species with which it usually occurs, *R. inequicostatus* has a thick and relatively convex shell, thus the 'wedged' mode of life suggested for the former group might be inferred for the latter species. However, the lack of plical lamellae on the right valve argues against such a conclusion and suggests a more conventional mode of life with only the right valve ever in contact with the substrate. The presence of a byssal notch indicates that the species was byssate, at least when young, and the association with corals implies that the latter provided the attachment surface. Adults may have been forced to recline by virtue of their large size and thick shells.

The irregular ornament, high convexity and thick shell of *R. mequicostatus* would have greatly hindered swimming and in spite of ontogenetic increase in the umbonal angle it seems likely that adult animals were essentially sessile. The high convexity and thick shell probably facilitated a 'siege' policy against predators.

10. ORIGINS AND EVOLUTION

R. inequicostatus undoubtedly evolved from *R. vagans*. Evolution of a form with a relatively invariant number of initial plicae, consistently developed early in ontogeny, and with consistently widely spaced plical lamellae and rare intercalary plicae, is apparently a case of 'genetic assimilation' (WAD-DINGTON, 1957) and as such implies regulatory change. Other morphological changes (see Section 3) may imply evolution of the structural genome.

There are apparently no phyletic changes in *R. inequicostatus*. Maximum height in the Kimmeridgian (41 mm; MNP) is considerably less than in the Oxfordian (75 mm) but this is probably a reflection of the restricted sample (see Section 5) rather than an evolutionary reduction in size.

The paucity of Callovian records of R. inequicostatus is probably due to the scarcity of coralliferous facies in Europe at this time. However, there is no scarcity of coralliferous facies to account for the apparent extinction of the species in the Tithonian. A deterministic explanation for the demise of R. inequicostatus is as yet unavailable.

- ABEL, O. (1897): Die Tithonschichten von Niederfellabrunn in Niederösterreich und deren Beziehungen zur unteren Wolgastufe. Verh. K. K. geol. Reichsanst., Wien, Year 1897: 343–362; Wien.
- AGER, D. V., DONOVAN, D. I., KENNEDY, W. J., MCKERROW, W. S., MUDGE, D. C. & SELLWOOD, B. W. (1973): The Cotswold Hills. – Geologist's Association Guide, Nr. 36: 34 pp; Colchester (Benham).
- ALENCASTA DE CSERNA, G. & ESTELA BUITRON, B. (1965): Estratigrafia y Paleontologia del Jurasico superior de la parte centromeridional del Estado de Puebla. Parte II. Fauna del Jurasico superior de la region de Petlalcingo, Estado de Puebla. – Paleont. mex., Nr. 21: 53 pp; México.
- ALLASINAZ, A. (1972): Revisione dei Pettinidi triassici. Riv. ital. Paleont. Stratigr., 78: 189–428; Milano.
- ALLEN, H. A. (1905): Catalogue of types and figured specimens of British Lamellibranchiata from the Rhaetic Beds and Lias, preserved in the Museum of Practical Geology, London. – Mem. geol. Surv. Summ. Progr., Year 1904: 172–178; London.
- ALLEN, J. A. (1953): Observations on the epifauna of the deep water muds of the Clyde Sea area, with special reference to *Chlamys* septemradiata. – J. Anim. Ecol., 22: 240–260; Oxford.
- ALTH, A. (1882): Die Versteinerungen des Nizniower Kalksteines. Beitr. Paläont. Geol. Öst.-Ung., 1: 183–332; Wien.
- ANDERSON, F. W. & BAZLEY, R. A. B. (1971): The Purbeck Beds of the Weald (England). – Bull. geol. Surv. Gt. Br., Nr. 34: 1–138; London.
- ANDLER (1858): Über die Angulaten-Schichten in der Württembergischen Jura-Formation. – Neues Jb. Miner. Geol., Year 1858: 641–645; Stuttgart.
- ARKELL, W. J. (1926): Studies in the Corallian Lamellibranch Fauna of Oxford, Berks., and Wilts. II. Pectinidae.-Geol. Mag., 43: 534–555; London.
- (1928): Aspects of the ecology of certain fossil coral reefs. J. Ecol., 16: 134–139; London.
- (1929a-37a): A monograph of British Corallian Lamellibranchs. Palaeontogr. Soc. [Monogr.], (1), 1929: 1–72; (2), 1930: 73–104; (3), 1931: 105–132; (4), 1932: 133–180; (5), 1933: 181–228; (6), 1934: 229–276; (7), 1934: 277–324; (8), 1935: 325–350, I–XVI; (9), 1936: 351–376, xvii–xxii; (10), 1937: 377–392, xxiii–xxxviii; London.
- (1931b): Berechtigungen der Identität gewisser jurassischer Pecten-Arten, – Zentbl. Min., Year 1931 (B): 430–443; Stuttgart.
- (1936b): The Corallian beds of Dorset. Part I. The Coast.-Proc. Dorset nat. Hist. archaeol. Soc., 57: 59–93; Dorchester.
 (1956): Jurassic Geology of the World. – 757pp, Edinburgh
- (Oliver & Boyd). BARBULESCU, A. (1961): Contributii la studiul Jurasicului din Valea
- Tichilestilor (R. Hirsova). Studii Cerc. Geol., 6: 699–708; Bucuresti.
- (1971): Les facies du Jurassique dans la partie ouest de la Dobrogea centrale (Roumanie). – Ann. Inst. Geol. Publ. Hungar, 54: 225–232; Budapest.
- BAYLE, E. (1878). Explication de la carte Geologique de la France,
 Atlas- Première Partie. Fossiles principaux des terrains. 4:
 158 plates; Paris (Impr. Nationale).
- BEAN, W. (1839): A catalogue of the fossils found in the Cornbrash limestone of Scarborough with Figures and Descriptions of some of the undescribed Species. – Mag. nat. hist. (N. S.), 3: 57–62; London.
- BEHMEL, H. (1970): Beiträge zur Stratigraphie und Paläontologie des Juras von Ostspanien. V. Stratigraphie und Fazies im präbetischen Jura von Albacete und Nord Murcia. – Neues Jb. Geol. Paläont. Abh., 137: 1–102; Stuttgart.
- BEHMEL, H. and GEYER, O. F. (1966): Beiträge zur Stratigraphie und Paläontologie des Juras von Ostspanien. 111. Stratigraphie und Fossilführung im Unterjura von Albarracin (Provinz Teruel).
 – Neues Jb. Geol. Paläont. Abh., 124: 1–52; Stuttgart.

- BEHRENDSEN, O. (1891): Zur Geologie des Ostabhanges der argentinischen Cordillere. 1 Theil.-Zeit. dt. geol. Ges., 43: 369–402; Berlin.
- BENECKE, E. W. (1898): Beitrag zur Kenntnis der Jura in Deutsch-Lothringen. Abh. geol. Spez.-Karte. Els.-Loth. (N. S.), 1: 1–97; Straßburg.
- BERRIDGE, N. G. & IVIMEY-COOK, H. (1967): The geology of a Geological Survey borehole at Lossiemouth, Morayshire. – Bull. geol. Surv. Gt. Br., Nr. 27: 155–169; London.
- BETTONI, A. (1900): Fossili Domeriani della provincia di Brescia. Abh. schweiz. paläont. Ges., 27: 1–88; Zürich.
- BEU, A. G. (1966): Ecological variation of *Chlamys dieffenbachi* (REEVE) (Mollusca, Lamellibranchia). – Trans. R. Soc. N. Z. (Zool.), 7: 93–96; Dunedin.
- BISTRAM, A. F. (1903): Beiträge zur Kenntnis des unteren Lias in der Val Solda. 99 pp; Freiburg (Dissertation).
- BLAKE, J. F. (1875): On the Kimmeridge Clay of England. Q. Jl. geol. Soc. Lond., 31: 196–237; London.
- BLANCHET, F. (1923): La faune du Tithonique inférieur des regions subalpines et ses rapports avec celle du Jura franconien. Bull. Soc. géol. Fr. (4), 23: 70–80; Paris.
- BLASCHKE, F. (1911): Zur Tithonfauna von Stramberg in M\u00e4hren. Annln. naturh. Mus. Wien, 25: 143–222; Wien.
- BLOOM, S. A. (1975): The motile escape response of a sessile prey. A sponge-scallop mutualism. – J. exp. mar. Biol. Ecol., 17: 311–321; Amsterdam.
- BLUTHGEN, J. (1936): Die Fauna und Stratigraphie des Oberjura und der Unterkreide von König Karl Land. – 91pp; Grimmen in Pommern (Grimmer Kreis-Zeitung).
- BODEN, K. (1911): Die Fauna des Unteren Oxford von Popilany in Lithauen. – Geol. paläont. Abh. (N. S.), 10: 125–199; Jena.
- BOEHM, G. (1881a): Die Fauna des Kelheimer Diceras-Kalkes: Zweite Abteilung – Bivalven. – Palaeontographica, 28: 141–192; Stuttgart.
- (1881b): Die Bivalven der Schichten des Diceras Munsteri (Diceraskalk) von Kelheim. – Z. dt. geol. Ges., 33: 67–74; Berlin,
- (1883): Die Bivalven der Stramberger Schichten. Palaeontographica, Supp. II: 493–680; Cassel.
- BOHM, J. (1901): Über die Fauna der Pereiros-Schichten. Z. dt. geol. Ges., 53: 211–252; Berlin.
- BONARELLI, G. (1895): Fossili Domeriani della Brianza. Rc. 1st. lomb. Sci. Lett. (2), 28: 326–341; Milano.
- BORISSIAK, A. & IVANOFF, E. (1917): Les Pélécypodes des couches jurassiques de la Russie d'Europe. V. Pectinidae. – Trūdy gcol. Kom., Nr. 143: 1–58; S. Peterburg.
- BOTTO-MICCA, L. (1893): Fossili degli strati a *Lioceras opalinum* REIN. e *Ludwigia murchisonae* SOW. della Croce di Valpore (M. Grapa), Provincia di Treviso. – Boll. Soc. geol. ital., 12: 143–193; Roma.
- BOULE, M. (1906-32): Types du Prodrome de paléontologie stratigraphique universelle de ALCIDE D'ORBIGNY. Annls. Paleont., 1906, 1: 79–100, 165–172, 193–196; 1907, 2: 89–96, 161–172; 1908, 3: 25–40, 189–200; 1909, 4: 109–124, 153–164; 1910, 5: 65–88; 1911, 6: 65–92; 1912, 7: 73–104; 1923, 12: 149–176; 1925, 14: 133–164; 1927, 16: 103–132; 1928, 17: 49–80; 1929, 18: 141–176; 1931, 20: 1–40, 165–184; 1932, 21: 1–30; Paris.
- BRADSHAW, M. J. (1978): A facies analysis of the Bathonian of Eastern England. – Unpubl. M. S. D. Phil., Univ. Oxford: 467 pp.
- BRANCO, W. (1879): Der untere Dogger Deutsch-Lothringens. Abh. geol. Spez.-Karte. Els.-Loth., 2: 1–155; Straßburg.
- BRASIL, L. (1895): Observations sur le Bajocien de Normandie. Bull. Lab. Geol. Fac. Sci. Caen, Year 1895: 1–21; Caen.
- BRAUNS, D. (1871): Der untere Jura im nordwestlichen Deutschland von der Grenze der Trias bis zu den Amaltheenthonen mit besonderer Berücksichtigung seiner Molluskfauna. – 493 pp; Braunschweig (Vieweg).

- (1874): Der obere Jura im nordwestlichen Deutschland. 434 pp; Braunschweig (Vieweg).
- BRONN, H. G. (1852): Lethaea geognostica (2). 412 pp; Stuttgart.
- BROOKFIELD, M. (1973): Palaeogeography of the Upper Oxfordian and Lower Kimmeridgian (Jurassic) in Britain. – Palaeogeogr. Palaeoclimatol. Palaeoecol., 14: 137–167; Amsterdam.
- (1978): The litostratigraphy of the upper Oxfordian and lower Kimmeridgian beds of South Dorset. – Proc. Geol. Ass., 89: 1–32; Edinburgh.
- BROWN, T. (1837–49): Illustrations of the Fossil Conchology of Great Britain and Ireland. – 273 pp; London (Smith, Elder).
- BRUN, E. (1972): Food and feeding habits of *Luidia ciliaris* (Echinodermata: Asteroidea). – J. Mar. Biol. Ass. U. K., **52**: 225–236; Plymouth.
- BUCH, C. L. VON (1839): Über den Jura in Deutschland. Abh. dt. Akad. Wiss. Berl., Year 1837: 49–135; Berlin.
- BURCKHARDT, C. (1903): Beiträge zur Kenntnis der Jura- und Kreideformation der Cordillere (1). – Palaeontographica, 50: 1–72; Stuttgart.
- BURNETT, A. L. (1960): The mechanism employed by the starfish Asterias forbesi to gain access to the interior of the bivalve Venus mercenaria. – Ecology, 41: 583–4; Durham, N. C.
- BUVIGNIER, A. (1852): Statistique géologique, minéralogique, minéralurgique et paléontologique du département de la Meuse. Atlas. – 52 pp; Paris (Baillière).
- CAPELLINI, G. (1866): Fossili infraliassici dei dintorni del golfo della Spezia. – Atti Accad. Sci. Ist. Bologna, **5:** 413–486; Bologna.
- CARTER, R. M. (1968): On the biology and palaeontology of some predators of bivalved molluses. – Palaeogeogr. Palaeoclimatol. Palaececol., 4: 29–65; Amsterdam.
- (1972): Adaptations of British Chalk Bivalvia. J. Paleont., 43: 325–340; Lawrence, Kansas.
- CHANNON, P. J. (1950): New and enlarged Jurassic sections in the Cotswolds. – Proc. Geol. Ass., 61: 242–260; London.
- CHAPUIS, M. F. & DEWALQUE, M. G. (1853): Description des fossiles des terrains secondaires de la province de Luxembourg. – Mem. Acad. r. Belge, 33: 303 pp; Bruxelles.
- CHAVAN, A. (1952): Les Pélécypodes des sables astartien de Cordebugle (Calvados). – Schweiz. paläont. Abh., 69: 132pp; Zürich.
- CHOUBERT, G. (1938): Sur le Dogger du Haut Atlas oriental. C. r. hebd. Séanc. Acad. Sci., Paris, 206: 197–199; Paris.
- CLARK, G. R. II. (1971): The influence of water temperature on the morphology of *Leptopecten latiauritus*. – Veliger, 13: 269–272; Berkeley.
- (1974): Calcification on an unstable substrate: Marginal growth in the mollusc *Pecten diegensis*. – Science, N. Y., 183: 968–970; Washington.
- COCK, A. G. (1966): Genetical aspects of metrical growth and form in animals. – Q. Rev. Biol., 41: 131–190; Baltimore.
- CONTEJEAN, C. H. (1859): Étude de l'étage Kimméridien dans les environs de Montbéliard et dans le Jura, la France et l'Angleterre. – Mem. Soc. Émul. Doubs., Year 1858: 352 pp; Besançon.
- COQUAUD, H. (1860): Description physique, géologique, paléontologique et minéralogique du département de la Charente (2). – 420 pp; Marseille (Barlatier).
- COSSMANN, M. (1900): Seconde note sur les mollusques du Bathonien de St. – Gaultier (Indre). – Bull. Soc. géol. Fr (3), 28: 165–203; Paris.
- (1904): Note sur l'infralias de la Vendée et des Deux-Sèvres (suite). – Bull. Soc. géol. Fr. (4), 3: 497–545; Paris.
- (1906): Quelques pélécypodes jurassiques de France. C. r. Ass. fr. Avanc. Sci., Year 1906 (Lyons Congress): 11 pp; Paris.
- (1907a): Troisième note sur le Bathonien de Saint-Gaultier (Indre). – Bull. Soc. geol. Fr. (4), 10: 225–253; Paris.
- (1907 b): Description de quelques pélécypodes jurassiques recueillis en France. – C. r. Ass. Fr. Avanc. Sci., Year 1907 (Rheims Congress): 14 pp; Paris.
- (1907c): Paléontologie: pp. 10–70 1n: THIERY, P. & Coss-MANN, M.: Note sur le Callovien de la Haute Marne et spécialement sur un gisement situé dans la commune de Bricon. – Bull. Soc. Agric. Lett. Sci. Artes Haute Saône, Year 1907 (2): 79 pp; Vesoul.

- (1910): Description de quelques espèces de l'oolithe bajocienne de Nuars (Nievre). – Bull. Soc. Sci. hist. nat. Yonne, Year 1909: 1–13; Auxerre.
- (1911): Quelques pélécypodes jurassiques recueillis en France.
 C. r. Ass. fr. Avanc. Sci., Year 1911 (Dijon Congress): 10pp; Paris.
- (1912): Quelques pélécypodes jurassiques recueillis en France.
 C. r. Ass. fr. Avanc. Sci., Year 1912 (Nîmes Congress):
 11 pp; Paris.
- (1914): Description de quelques pélécypodes jurassiques recueillis en France. – C. r. Ass. fr. Av. Sci., Year 1914 (Le Havre Congress): 48 pp; Paris.
- (1916): Etude complémentaire sur le Charmouthien de la Vendée. – Bull. Soc. geol. Normandie, 33: 23–69; Le Havre.
- (1919): Bajocien-Bathonien dans le Nièvre. Bull. Soc. géol.
 Fr. (4), 18: 337–459; Paris.
- (1921): Description de pélécypodes jurrassiques recueillis en France. – C, r, Ass. fr. Avanc. Sci., Year 1920 (Strasbourg Congress): 29pp; Paris.
- (1922): Description de pélécypodes jurassiques recueillis en France. – C. r. Ass. fr. Avanc. Sci., Year 1922 (Montpellier Congress): 21 pp; Paris.
- (1925): Sur quelques pélécypodes du Jurassique francaise. Bull. Soc. géol. Fr. (4), 24: 654–671; Paris.
- COTTEAU, G. (1853–57): Études sur les mollusques fossiles du département de le Yonne. Pt. 1 (1), 1852: i–xliii; (2), 1853: 1–17; (3), 1854: 18–47; (4), 1855: 48–124; (5), 1857: 125–144; Paris (Baillière).
- Cox, L. R. (1926): Notes on the Lamellibranchia of the Black Marl of Black Ven and Stonebarrow. – Q. Jl. geol. Soc. Lond., 82: 180–184; London.
- (1928): The Gastropod and Lamellibranch Molluscs from the Belemnite Marls. – Q. Jl. geol. Soc. Lond., 84: 233–245; London.
- — (1935a): Jurassic Gastropoda and Lamellibranchia: pp. 148–197. – In: MACFADYEN, W. A. (ed.): The Geology of British Somaliland. II. The Mesozoic Palaeontology of British Somaliland; London.
- (1935b): The Triassic, Jurassic, and Cretaceous Gastropoda and Lamellibranchia of the Attock District. – Mem. geol. Surv. India Palaeont. indica (N. S.), 20 (Mem. 5): 27 pp; Calcutta.
- (1936): Fossil Mollusca from southern Persia (Iran) and Bahrein island. Mem. geol. Surv. India Palaeont. indica (N. S.), 22 (Mem. 2): 69 pp; Calcutta.
- (1942): Notes on Jurassic Lamellibranchs. VIII. On the genus Velata QUENSTEDT. – Proc. malac. Soc. Lond., 25: 119–124; London.
- (1952): The Jurassic Lamellibranch fauna of Cutch. (Kachh). Nr. 3. Families Pectinidae, Amusiidae, Plicatulidae, Limidae, Ostreidae and Trigoniidae (supplement). – Mem. geol. surv. India Palaeont. indica (9), 3 (Mem. 4): 128 pp; Calcutta.
- (1965): Jurassic Bivalvia and Gastropoda from Tanganyika and Kenya. – Bull. Br. Mus. nat. Hist. (Geol.), Supp. 1: 213 pp; London.
- COX, L. R. & ARKELL, W. J. (1948–50): A survey of the Mollusca of the British Great Oolite Series. – Palaeontogr. Soc. [Monogr.], (1) 1948: 1–48; (2), 1950: 49–105; London.
- CRAGIN, F. W. (1905): Paleontology of the Malone Jurassic Formation of Texas. – Bull. U. S. geol. Surv., 266: 109 pp; Washington.
- CROSS, J. E. (1875): The Geology of North-West Lincolnshire. Q. Jl. geol. Soc. London, 31: 115–130; London.
- DAHM, H. (1965): Stratigraphie und Paläogeographie im Kantabrischen Jura (Spanien). – Beih. geol. Jb., 44: 13–54; Hannover.
- DAL PIAZ, G. (1912): Sulla fauna Batoniana del Monte Pastello nel Veronese. – Memorie Inst. geol. miner. Univ. Padova, 1: 215–266; Padova.
- DAMBORENEA, S. E. & MANCENIDO, M. O. (1979): On the palaeogeographical distribution of the pectinid genus Weyla. – Palaeogeogr. Palaeoclimatol. Palaeoecol., 27: 85–102; Amsterdam.
- DAMON, R. (1860): A supplement to the Handbook to the Geology of Weymouth and the Island of Portland. – 9 Plates, London (Stanford).

- (1880): A supplement to the Geology of Weymouth and the Isle of Portland. – 18 Plates, London (Stanford).
- DARESTE DE LA CHAVANNE, J. (1920): Fossiles Liasiques de la région de Guelma. – Matér. Carte géol. Algér. (1), Nr. 5: 72 pp; Alger.
- DEAN, W. T. (1954): Notes on part of the Upper Lias succession at Blea Wyke, Yorkshire. – Proc. Yorks. geol. polytech. Soc., 29: 161–179; Hull.
- DECHASEAUX, C. (1936): Pectinidés jurassiques de l'est du Bassin de Paris. Annls. Paléont., **25**: 1–148; Paris.
- DEFRANCE, M. J. L. (1825a): [Description of *Pecten Incrustatus* sp. nov.]: p. 253 1n: BLAINVILLE, H. DE: Dictionnaire des Sciences Naturelles par plusieurs professeurs du jardin du roi. 38; Strasbourg (Levrault).
- (1825b): Mémoire géologique sur les terrains de la Normandie de M. DE CAUMONT. Mem. Soc. linn. Normandie, 2: p. 507; Caen.
- DE GREGORIO, A. (1884): Nota intorno ad alcune nuove conchiglia mioceniche de Sicilian. – Naturalista sicil., 3: 119–120; Palermo.
- (1886a): Nota intorno a taluni fossili di Monte Erice di Sicilia.
 Memorie Accad. Sci. Torino (2), 37: 665–676; Torino.
- (1886b): Monographie des fossiles de Ghelpa du sous-horizon Ghelpin DE GREG. – Annls. Géol. Paléont., Nr. 1:27 pp; Palermo.
- (1886c): Monographie des fossiles de Valpore (Mont Grappa) du sous-horizon Grappin DE GREG. – Annls. Géol. Paléont., Nr. 2: 20 pp; Palermo.
- (1886d): Monographie des fossiles de S. Vigilio du sous-horizon Grappin DE GREG. Annls. Géol. Paléont., Nr. 5: 28 pp; Palermo.
- (1922): Monografia dei fossili titonici di Casale di sopra (Busambra). – Annls. Géol. Paléont., Nr. 36: 28 pp; Palermo.
- DE LA BECHE, H. T. (1832): Handbuch der Geognosie. 612 pp; Berlin (Duncker, Humblot).
- DENINGER, K. (1907): Die mesozoischen Formationen auf Sardinien.

 Neues Jb. Miner. Geol. Paläont. Beilbd., 23: 435–473; Stuttgart.
- DESHAYES, G. P. (1831): Description des coquilles caractéristiques des terrains. 264 pp, Paris (Levrault).
- DHONDT, A. V. (1971): Systematic revision of *Entohum, Propeamussium* (Amussiidae) and *Syncyclonema* (Pectinidae, Bivalvia, Mollusca) of the European Boreal Cretaceous. Bull. Inst. r. Sci. nat. Belg., 47, Nr. 32: 92 pp; Bruxelles.
- DIETL, G. (1977): The Aalenian at the type locality. Stuttg. Beitr. Naturk. (B), Nr. 30: 12 pp; Stuttgart.
- DIETRICH, W. O. (1933): Zur Stratigraphie und Paläontologie der Tendaguruschichten. – Palaeontographica, 72: 1–86; Stuttgart.
- DI STEFANO, G. (1886): Sul Lias inferiore di Taormina e de'suoi dintorni. – G. Sci. nat. econ. Palermo, 18: 135 pp; Palermo.
- (1891): A proposito di due Pettini dei calcari nero-lionata di Taormina. – Naturalista Sicil., 11: 61–64; Palermo.
- DOLLFUS, A. (1863): La Faune Kimméridienne du Cap de l'Hève. 102 pp, Paris.
- DONOVAN, D. T. (1953): The Jurassic and Cretaceous stratigraphy and palaeontology of Traill Ø, East Greenland. – Meddr. Grønland, 111, Nr. 4: 150pp; Kjøbenhavn.
- DOUGLAS, J. A. & ARKELL, W. J. (1928): The stratigraphical distribution of the Cornbrash. I. The southwestern area. Q. Jl. geol. Soc. Lond., 84: 117–178; London.
- (1932): The stratigraphical distribution of the Cornbrash. II. The northeastern area. – Q. Jl. geol. Soc. Lond., 88: 112–170; London.
- DOUVILLÉ, H. (1886): Examen des fossiles rapportés du Choa par M. AUBRY. – Bull. Soc. géol. Fr. (3), 14: 223–241; Paris.
- (1916): Les terrains secondaires dans le massif du Moghara: Paléontologie. Première partie. Terrains Triassiques et Jurassiques. – Mem. Acad. Sci. Inst. Fr., 54; 1–84; Paris.
- DOUVILLÉ, H. & COSSMANN, M. (1925): Le Callovien du massif du Moghara. – Bull. Soc. géol. Fr. (4), 25: 303–328; Paris.
- DUBAR, G. (1925): Études sur le Lias des Pyrénées francaises. Mem. Soc. geol. N., 9, Nr. 1: 332 pp; Paris.
- (1948): La Faune Domérienne du Jebel Bou-Dahar. Notes Mem. Serv. Mines Carte géol. Maroc. Nr. 68: 248 pp; Rabat.

- DUFF, K. L. (1975): Palaeoecology of a bituminous shale the Lower Oxford Clay of Central England. – Palaeontology, 18: 443–482; London.
- (1978): Bivalvia from the English Lower Oxford Clay (Middle Jurassic). – Palaeontogr. Soc. [Monogr.]: 137 pp; London.
- DUMORTIER, E. (1864–74): Études paléontologiques sur les dépots jurassiques du Bassin du Rhone. – 1, 1864; 187 pp; 2, 1867: 252 pp; 3, 1869: 348 pp; 4, 1874: 335 pp; Paris.
- EMERSON, B. K. (1870): Die Liasmulde von Markoldendorf bei Einbeck. – Z. dt. geol. Ges., 22: 271–334; Berlin.
- ERNST, W. (1923): Beiträge zur Paläontologie und Stratigraphie des nordwestdeutschen Jura. IV. Zur Stratigraphie und Fauna des Lias ζ im nordwestlichen Deutschland (Erster Teil). – Palaeontographica, 65: 1–96; Stuttgart.
- ÉTALLON, A. (1863): Étude paléontologique sur le Jura graylois. Mem. Soc. Émul. Doubs, 8: 221–506; Besançon.
- FAURE-MARGUERIT, G. (1920): Monographie paléontologique des assises coralligènes du promontoire de l'Échaillon (Isère). – Trav. Lab. Géol. Univ. Grenoble, 12: 9–108; Grenoble.
- FAVRE, E. (1876): Description des fossiles du terrain Oxfordien des Alpes Fribourgeoises. – Abh. schweiz. paläont. Ges., 3: 1–75; Genève.
- FEDER, H. M. (1970): Growth and predation by the ochre sea-star *Pisaster ochraceus* (BRANDT) in Monterey Bay, California. – Ophelia, 8: 161–185; Helsingoer.
- FEDER, H. M. & CHRISTENSEN, A. M. (1966): Aspects of Asteroid Biology: pp. 87–128 – In: BOOLOOTIAN, R. A. (ed.): Physiology of Echinoderms; New York (Interscience).
- FIEBELKORN, M. (1893): Die norddeutschen Geschiebe der oberen Juraformation. – Z. dt. geol. Ges., 45: 378–450; Berlin.
- FISCHER, J.-C. (1964): Contribution à l'étude de la faune bathonienne dans la vallée de la Creuse (Indre): Brachiopodes et Molluscques. – Annls. Paléont. (Invert.), 50: 19–101; Paris.
- FISCHER, P. (1880–87): Manuel de Conchyliologie et de Paléontologie Conchyliologique. – 1369pp; Paris (Savy).
- FISCHER DE WALDHEIM, G. (1843): Revue des fossiles du gouvernement de Moscou. – Byull. mosk. Obschch. Ispÿt. Prir., 16: 100–140; Moscou.
- FREBOLD, H. (1957): The Jurassic Fernie Group in the Canadian Rocky Mountains and foothills. – Mem. geol. Surv. Brch. Can., Nr. 287: 197 pp; Ottawa.
- FRENTZEN, K. (1932): Paläobiologisches über die Korallenvorkommen im oberen weißen Jura bei Nattheim, O. A. Heidenheim.
 Bad. geol. Abh., 4: 43–47; Karlsruhe.
- FUCINI, A. (1906): Fauna della zona a Pentacrinus tuberculatus MILL. di Gerfalco in Toscana. – Boll. Soc. geol. Ital., 25: 613–654; Roma.
- (1920): Fossili domeriani dei dintorni di Taormina. Palaeontogr. Ital., 26: 75–116; Pisa.
- FURSICH, F. T. (1971): Hartgründe und Kondensation im Dogger von Calvados. – Neues Jb. Geol. Paläont. Abh., 138: 313–342; Stuttgart.
- (1976): The use of macro-invertebrate associations in interpreting Corallian (U. Jurassic) environments. – Palaeogeogr. Palaeoclimatol. Palaeoecol., 20: 236–256; Amsterdam.
- (1977): Corallian (Upper Jurassic) marine benthic associations from England and Normandy. – Palaeontology, 20: 337–385; London.
- FURSICH, F. T. & HURST, J. M. (1974): Environmental factors determining the distribution of brachiopods. – Palaeontology, 17: 879–900; London.
- FUTTERER, K. (1894): Beiträge zur Kenntnis des Jura in Ost-Afrika. Z. dt. geol. Ges., 46: 1–49; Berlin.
- GEMMELLARO, G. G. (1874): Sopra i fossili della zona con Terebratula aspasia MENEGHINI della provincia di Palermo e di Trapani. – G. Sci. nat. econ. Palermo, 10: 73–132; Palermo.
- (1875): Sulla fauna del calcare a *Terebratula janitor* del nord di Sicilia. – G. Sci. nat. econ. Palermo, 9: 15–77; Palermo.
- (1878): Sui fossili del calcare cristallino delle Montagne del Casale e di Bellampo nella provincia di Palermo. – G. Sci. nat. econ. Palermo, 13: 233–424; Palermo.
- (1886): Sugli strati con *Leptaena* nel Lias superiori della Sicilia. – Boll. R. Com. geol. Ital., 17: 341–356; Roma.
- GEMMELLARO, G. G. & DI BLASI, A. (1874): Pettini de titonio inferiore. – Atti. Accad. gioenia Sci. Nat., 9: 95–138; Catania.

- GEYER, O. F. (1954): Die oberjurassische Korallenfauna von Württemberg. – Palaeontographica (A), 104: 121–200; Stuttgart.
- GILL, G. A. & COATES, A. G. (1977): Mobility, growth patterns and substrate in some fossil and recent corals. – Lethaia, 10: 119–134; Oslo.
- GOLDFUSS, G. A. (1883-40): Petrefacta Germaniae. 2 (1), 1833: 1-68; (2), 1836: 69-140; (3), 1837: 141-224; (4), 1840: 225-312; Dusseldorf (Arnz).
- GOTTSCHE, C. (1878): Über jurassische Versteinerungen aus der argentinischen Cordillere. – Palaeontographica, Supp. 3: 50 pp; Cassel.
- GOULD, S. J. (1971): Muscular mechanics and the ontogeny of swimming in scallops. – Palaeontology, 14: 61–94; London.
 — (1977): Ontogeny and Phylogeny. – 501 pp; Cambridge, Mass (Belknap).
- GOULD, S. J. & ELDREDGE, N. (1977): Punctuated equilibria: the tempo and mode of evolution reconsidered. – Paleobiology, 3: 115–151; Lancaster, PA.
- GRECO, B. (1898): Fauna della zona con *Lioceras Opalinum* REIN. sp. di Rossano in Calabria. – Palaeontogr. ital., 4: 93–139; Pisa.
- GREPPIN, E. (1898): Description des fossiles de la grande oolithe des environs de Bâle. – Abh. schweiz. paläont. Ges., 25: 1–52; Genève.
- GUTSELL, J. S. (1931): The natural history of the bay scallop. Bull. Bur. Fish., Wash., 46: 569–632; Washington.
- HALLAM, A. (1963): Observations on the palaeoecology and ammonite sequence of the Frodingham Ironstone (Lower Jurassic). – Palaeontology, 6: 554–574; London.
- (1965): Environmental causes of stunting in living and fossil marine benthonic invertebrates. – Palaeontology, 8: 132–155; London.
- (1971): Facies analysis of the Lias in West Central Portugal. Neues Jb. Geol. Paläont. Abh., 139: 226–265; Stuttgart.
- (1972): Diversity and density characteristics of Pliensbachian-Toarcian molluscan and brachiopod faunas of the North Atlantic. – Lethaia, 5: 389–412; Oslo.
- (1975a): Jurassic Environments. 269 pp; Cambridge, U. K. (Univ. Press).
- (1975b): Coral patch reefs in the Bajocian of Lorraine. Geol. Mag., 112: 383–392; London.
- (1976): Stratigraphic distribution and ecology of European Jurassic bivalves. – Lethaia, 9: 245–259; Oslo.
- (1977): Jurassic bivalve biogeography. Paleobiology, 3: 58–73; Lancaster, PA.
- HAUFF, B. (1921): Untersuchung der Fossilfundstätten von Holzmaden im Posidonienschiefer der oberen Lias Württembergs.
 – Palaeontographica, 64: 1–42; Stuttgart.
- — (1953): Das Holzmadenbuch. 54 pp; Öhringen (Rau).
- HAYAMI, I. (1975): Liassic Chlamys, 'Camptonectes' and other pectinids from the Kuruma group in Central Japan. – Trans. Proc. palaeont. Soc. Japan (N. S.), Nr. 28: 119–127; Tokyo.
- (1959): Pelecypods of the Mizunuma Jurassic in Miyagi Prefecture, with some stratigraphical remarks. – Trans. Proc. palaeont. Soc. Japan (N. S.), Nr. 34: 66–67; Tokyo.
- (1961): On the Jurassic pelecypod faunas in Japan. J. Fac. Sci. Tokyo Univ. (Sect. 2), 13: 243–343; Tokyo.
- (1972): Lower Jurassic Bivalvia from the environs of Saigon: pp.179–230 – In: KOBAYASHI, T. & TORIYAMA, R. (eds.): Geology and Palaeontology of Southeast Asia (10); Tokyo (Univ. Press).
- HENNIG, E (1924): Der mittlere Jura im Hinterlande von Daressalaam (Deutsch-Ostafrika). – Monogn. Geol. Paläont. (2), Nr. 2: 131 pp; Berlin.
- HERRMANNSEN, A. (1846–47): Indicis generum małacozoorum primordia. – 1: 637 pp; Cassel (T. Fischer).
- HERTLEIN, L. G. (1969): Families Entoliidae and Pectinidae: N348-373. – In: MOORE, R. C. (ed.): Treatise on Invertebrate Palaeontology. N:1, Molłusca: Bivalvia; Kansas (Univ. Printing Service).
- HEWITT, R. A. & HURST, J. M. (1977): Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance. – Lethaia, 10: 287–301; Oslo.

- HILLEBRANDT, A. VON (1973): Die Ammonitengattungen Bouleteras und Frechiella im Jura von Chile und Argentinien. – Ecolg. geol. Helv., 66: 351–363; Lausanne.
- HOLDER, H. (1964): Jura. Handb. stratigr. Geol., 4: 603 pp; Stuttgart (Enke).
- (1978): Über die Pectiniden-Gattung Parvamussium im Jura.
 Stuttg. Beitr. Naturk., Nr. 38: 37 pp; Stuttgart.
- HÖLDER, H. & ZIEGLER, B. (1959): Stratigraphische und faunistische Beziehung im Weißen Jura (Kimmeridien) zwischen Süddeutschland und Ardèche. – Neues Jb. Geol. Paläont. Abh., 108: 150–214; Stuttgart.
- HORNELL, J. (1909): Report upon the anatomy of *Placuna placenta* with notes upon its distribution and economic uses. – Rpt. mar. Zool. Okhamandal, 1: 43–97; London.
- HUCKRIEDE, R. (1967): Molluskenfaunen mit limnischen und brackischen Elementen aus Jura, Serpulit und Wealden NW-Deutschlands und ihre paläogeographische Bedeutung. – Beih. geol. Jb., 67: 263 pp; Hannover.
- HUDSON, J. D. & PALFRAMAN, D. (1969): The ecology and preservation of the Oxford Clay fauna at Woodham, Bucks. – Q. Jl. geol. Soc. Lond., **124:** 387–418; London.
- HUDSON, J. D. & PALMER, T. J. (1976): A euryhaline oyster from the Middle Jurassic and the origin of the true oysters. – Palaeontology, 19: 79–93; London.
- HUDSON, R. G. S. (1958): The Upper Jurassic faunas of southern Israel. – Geol. Mag., 95: 415–425; London.
- HULL, E. (1857): Geology of the country around Cheltenham. Mem. geol. Surv. U. K., Nr. 44: 104pp; London.
- ILOVAISKY, D. (1904): L'Oxfordien et le Séquanien des gouvernements de Moscou et de Riasan. – Byull. mosk. Obshch. Ispyr. Prir., 17: 222–288; Moskva.
- IMLAY, R. W. (1964): Marine Jurassic pelecypods from central and southern Utah. – Prof. Pap. U. S. geol. Surv., Nr. 483 – C: 42 pp; Washington.
- — (1967): Twin Creek Limestone (Jurassic) in the Western Interior of the United States. – Prof. Pap. U. S. geol. Surv., Nr. 540: 105 pp; Washington.
- IVIMEY-COOK, H. C. (1974): The Permian and Triassic deposits of Wales: pp. 295–321. – In: OWEN, T. R. (ed.): The Upper Palaeozoic and post-Palaeozoic rocks of Wales; Cardiff (Univ. Wales Press).
- JAUBERT, M. (1868): Note sur les formations jurassiques qui recouvrent le versant nord du mont Lozère. – Bull. Soc. géol. Fr. (2), 26: 216–264; Paris.
- JAWORSKI, E. (1916): Beiträge zur Kenntnis des Jura in Süd-Amerika. II: Spezieller, paläontologischer Teil. – Neues Jb. Miner. Geol. Paläont. Beilbd, 40: 364–456; Stuttgart.
- JEFFERIES, R. P. S. & MINTON, P. (1965): The mode of life of two Jurassic species of '*Posidonia*' (Bivalvia). – Palaeontology, 8: 156–185; London.
- JODOT, P. (1923): Faune Bajocienne du Djebel Mahsseur près d'Oudjda (Maroc Oriental). – Bull. Soc. géol. Fr. (4) 23: 132–141; Paris.
- JOHNSON, A. L. A. (1980): The palaeobiology of the bivalve family Pectinidae in the Jurassic of Europe. – Unpubl. M. S. D. Phil., Univ. Oxford; 2 Vols: 532 and 187pp.
- (1981): Detection of ecophenotypic variation in fossils and its application to a Jurassic scallop. – Lethaia, 14: 277–285; Oslo.
- JOLY, H. (1907): Les fossiles du jurassique de la Belgique: Première partie: Infra-Lias. – Mém. Mus. r. Hist. nat. Belg., **5**: 1–156; Bruxelles.
- JORDAN, R. (1971): Zur Salinität des Meeres im höheren Oberen Jura Nordwest-Deutschlands. – Z. dt. geol. Ges., 122: 231–241; Berlin.
- JOUKOWSKY, E. & FAVRE, J. (1913): Monographie géologique et paléontologique du Salève (Haute-Savoie, France). – Mém. Soc. Phys. Hist. nat. Genève, 37: 295–523; Genève.
- KARVE-CORVINUS, G. (1966): Biostratigraphie des Oxfordium und untersten Kimmeridgium am Mont Crussol, Ardèche, im Vergleich mit Süddeutschland. – Neues Jb. Geol. Paläont. Abh., 126: 101–141; Stuttgart.
- KAUFMANN, E. G. (1969): Form, Function and Evolution: N129 205–In: MOORE, R. C. (ed.): Treatise on Invertebrate Palaeontology. N: 1, Mollusca: Bivalvia; Kansas (Univ. Printing Service).

- (1978): Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). – Neues Jb. Geol. Paläont. Abh., 157: 18–36; Stuttgart.
- KEFERSTEIN, C. (1828): Teutschland, geognostisch-geologisch dargestellt. – 5(3): 426–592; Weimar (Landes-Industrie-Comptoir).
- KELLY, S. R. A. (1977): The bivalves of the Spilsby Sandstone and contiguous deposits. – Unpubl. M. S. D. Phil., Queen Mary Coll., Univ. of London: 365 pp.
- KHUDYAEV, J. (1928): The Mesozoic deposits of the region of the Syola River, Petschoraland. – Izv. geol. Kom., 46: 497–521;
 S. Peterburg.
- KILIAN, W. (1889): Études paléontologiques sur les terrains secondaires et terriaires de l'Andalousie. – Mém. Acad. Sci. Inst. Fr. (2), 30: 601–762; Paris.
- KILIAN, W. & GUÉBHARD, A. (1905): Étude paléontologique et stratigraphique du système Jurassique dans les préalpes maritimes. – Bull. Soc. géol. Fr. (4), 2: 737–828; Paris.
- KIRKALDY, J. F. (1963): The Wealden and marine Lower Cretaceous beds of England. – Proc. Geol. Ass., 74: 127–146; London.
- KNUDSEN, J. (1967): The deep-sea Bivalvia. Scientific Reports 'John Murray' Expedition 1933–34, 9: 239–343; London.
- (1970): The systematics and biology of abyssal and hadal Bivalvia. – Galathea Report, 11: 7–238; Kjøbenhavn.
- KOCH, C. L. & DUNKER, W. (1837): Beiträge zur Kenntnis des norddeutschen Oolithgebildes und dessen Versteinerungen. – 64 pp; Braunschweig (Oehme, Müller).
- KRAUSE, P. G. (1908): Über Diluvium, Tertiar, Kreide und Jura in der Heilsberger Tiefbohrung. – Jb. preuß. geol. BergAkad. Landesanst., 28: 185–326; Berlin.
- KRENKEL, E. (1915): Die Kelloway-Fauna von Popilani in Westrußland. – Palaeontographica, 61: 191–362; Stuttgart.
- KRUMBECK, L. (1905): Die Brachiopoden und Molluskenfauna des Glandarienkalkes. – Beitr. Paläont. Geol. Öst.-Ung., 18: 65–162; Wien.
- (1924): Die Brachiopoden, Lamellibranchiaten und Gastropoden der Trias von Timor. 2. Paläontologischer Teil. – Paläontologie von Timor (13): 275 pp; Stuttgart (Schweizerbart).
- KUHN, O. (1935): Die Fauna des untersten Lias δ (Gibbosus-Zone) aus dem Sendelbach im Hanptsmoorwald östlich Bamberg. – Neues Jb. Miner. Geol. Paläont. Beilbd (B), 73: 465–493; Stuttgart.
- (1936): Die Fanna des Amaltheenthon (Lias δ) in Franken. Neues Jb. Miner. Geol. Paläont. Beilbd (B), 75: 231–311; Stnttgart.
- LAHUSEN, 1. (1883): Die Fauna der Jurassischen Bildungen des Rjasanischen Gouvernements. – Trudy geol. Kom., 1: 1–94; S.-Peterburg.
- LAMARCK, J. B. P. A. DE M. DE (1819): Histoire naturelle des animaux sans vertèbres. - 6: 343 pp; Paris (Verdière).
- (1836): Histoire naturelle des animaux sans vertèbres (2nd. ed.). – 7: 735 pp; Paris (Baillière).
- LANQUINE, A. (1929): Le Lias et le Jurassique des chaines provençales. 1. Le Lias et le Jurassique Inférieur. – Bull. Servs Carte géol. Fr., 32: 41–425; Paris.
- LAUBE, G. C. (1867): Die Bivalven des Braunen Jura von Balin. Denkschr. Akad. Wiss. Wien, Matt. nat. Kl., 27: 11–61; Wien.
- LEANZA, A. F. (1942): Los Pelecipodos del Lias de Piedro Pintada en el Neuquén. – Revta Mus. La Plata, Secc-Paleont. (N. S.), 2: 143–206; La Plata.
- LENTINI, F. (1973): I molluschi del Lias inferiore di Lorigi (Sicilia nordorientale). – Boll. Soc. paleont. ital., 12: 23–75; Modena.
- LEVINTON, J. S. (1970): The palaeoecological significance of opportunistic species. – Lethaia, 3: 69–78; Oslo.
- LEWINSKI, J. (1908): Les dépôts jurassiques près la station Checiny et leure faune. – Bull. int. Acad. Sci. Lett. Cracovie, Nr. 5: 408–445; Cracovie.
- (1923): Monographie géologique et paléontologique du Bononien de la Pologne. – Mém. Soc. géol. Fr. (Paléont.), 24: 1–108; Paris.
- LEYMERIE, A. (1838): Mémoire sur la partie inférieure du système secondaire du département du Rhône. – Mém. Soc. géol. Fr. (I), 3: 313–379; Paris.

- LINDSTROM, G. (1866): Om Trias-och Juraförsteninger fran Spetsbergen. – K. svenska VetenskAkad. Handl., 6, Nr. 6: 20 pp; Stockholm.
- LISSAJOUS, M. (1910): Jurassique Mâconnais-fossiles caractéristiques. – Bull. trimest. Soc. Hist. nat. Mâcon, 3, Nrs. 11, 12: 208 pp; Mâcon.
- (1923): Étude sur la faune du Bathonien des environs de Macon. Trav. Lab. Géol. Univ. Lyon, 3, Nr. 3: 286 pp; Lyon.
- LISTER, M. (1678): Historium animalium angliae tres tractatus. 250 pp; London (Martyn).
- LORIOL, P. DE (1867): Description des fossiles de l'Oolithe Corallienne de l'étage Valangien et de l'étage Urgonien du Mont Salève: 100pp – In: FAVRE, A. Recherches géologiques dans les parties de la Savoie (1); Genève (Masson).
- (1878): Monographie paléontologique des couches de la zone à *Ammonites tenuilobatus* (Badener Schichten) de Baden (Ar-govie). – Abh. schweiz. paläont. Ges., 5: 77–200; Genève.
- — (1881): Monographie paléontologique des couches de la zone à *Ammonites tenuilobatus* (Badener Schichten) d'Oberbuchsit- ten et de Wangen (Soleure). – Abh. schweiz. paläont. Ges., 8: 61–120; Genève.
- (1893): Études sur les mollusques des couches coralligènes inférieures du Jura Bernois. Partie 4. – Abh. schweiz. paläont. Ges., 19: 261–419; Genève.
- (1894): Étude sur les mollusques du Ranracien Inférieur du Jura Bernois. – Abh. schweiz. paläont. Ges., 21: 1–129; Genève.
- (1895): Étude sur les mollusques du Rauracian Supérieur du Jura Bernois. – Abh. schweiz. paläont. Ges., 22: 1–51; Genève.
- (1897): Étude sur les mollusques et brachiopodes de l'Oxfordien Supérieur et Moyen du Jura Bernois. – Abh. schweiz. paläont. Ges., 24: 78–158; Genève.
- (1899): Étude sur les mollusques et brachiopodes de l'Oxfordien Inférieur ou zone à *Ammonites Renggeri* du Jura Bernois.
 Abh. schweiz. paläont. Ges., 26: 119–184; Genève.
- (1900): Étude sur les mollusques et brachiopodes de l'Oxfordien Inférieur ou zone à Ammonites renggeri du Jura Lédonien. – Abh. schweiz. paläont. Ges., 27: 1–143; Genève.
- (1901): Étude sur les mollusques et brachiopodes de l'Oxfordien Supérieur et Moyen du Jura Bernois (Supplément 1). – Abh. schweiz. paläont. Ges., 28: 1–119; Genève.
- (1904): Étude sur les mollusques et brachiopodes de l'Oxfordien Supérieur et Moyen du Jura Lédonien. – Abh. schweiz. paläont. Ges., 31: 161–303; Genève.
- LORIOL, P. DE & COTTEAU, G. (1868): Monographie paléontologique et géologique de l'étage Portlandien du Département de l'Yonne. – Bull. Soc. Sci. hist. nat. Yonne (2), 1: 1–239; Auxerre.
- LORIOL, P. DE & LAMBERT, J. (1893): Description des mollusques et brachiopodes des couches Séquaniennes de Tonnerre (Yonne). – Abh. schweiz. paläont. Ges., 20: 1–213; Genève.
- LORIOL, P. DE & PELLAT, E. (1866): Monographie paléontologique et géologique de l'étage Portlandien des environs de Boulogne-sur-Mer. – Mém. Soc. Phys. Hist. nat. Genève, 19: 1–200; Genève.
- (1875): Monographie paléontologique et géologique des étages Jurassiques supérieurs de Boulogne sur Mer. – Mém. Soc. Phys. Hist. nat. Genève, 24: 1–326; Genève.
- LORIOL, P. DE., ROYER, E. & TOMBECK, H. (1872): Monographie paléontologique et géologique des étages supérieurs de la formation Jurassique. – Mém. Soc. linn. Normandie, 16: 1–539; Paris.
- LORIOL, P. DE & SCHARDT, H. (1883): Étude paléontologique et stratigraphique des couches à *Mytilus* des Alpes Vaudoises. – Abh. schweiz. paläont. Ges., 10: 1–140; Genève.
- LUNDGREN, B. (1878): Studier öfver faunan i den stenkolsförande formationen i nordvästra Skåne. – 57 pp; Lund (Berling).
- (1881): Undersökningar öfver molluskfaunan i Sveriges äldre mesozoiska bildningar. – Acta. Univ. Lund., 17: 1–57; Lund.
- (1883): Bemerkungen über die von der Schwedischen Expedition nach Spitzbergen 1882 gesammelten Jura und Trias-Fossilien. Bih. K. svenska VetenskAkad. Handl., 8, Nr. 12: 22 pp; Stockholm.

- (1895): Amärkningar om några Juraíossil från Kap Stewart;
 Ost Grönland. Meddr. Grønland, 19: 189–214; Kjøbenhavn.
- LYCETT, J. (1863): Supplementary monograph on the Mollusca from the Stonesfield Slate, Great Oolite, Forest Marble, and Cornbrash. – Palaeontogr. Soc. [Monogr.]: 129 pp; London.
- MAKOWSKI, H. (1952): La faune Callovienne de Luków en Pologne. Palaeont. pol., Nr. 4: 64 pp; Varsoviae.
- MARTIN, J. (1860): Paléontologie stratigraphique de l'Infra-Lias du département de la Côte d'Or. Mem. Soc. géol. Fr. (2), 7: 1–101; Paris.
- MARWICK, J. (1953): Divisions and faunas of the Hokonui System (Triassic and Jurassic). – Palaeont. Bull., Wellington, Nr. 21: 141 pp; Wellington, N. Z.
- MATTHEWS, S. C. (1973): Notes on open nomenclature and synonymy lists. – Palaeontology, 16: 713–719; London.
- MAUBERGE, P. L. (1951): Sur la presence de la zone à Dactylioceras semicelatum dans le Grand-Duché de Luxembourg. – Bull. Soc. belge Géol. Paléont. Hydrol., 60: 365–373; Bruxelles.
- (1971): À propos du dimorphisme sexuel chez les fossiles: Radulopecten vagans SOWERBY et Radulopecten anomalus TERQUEM. – Bull. Soc. lorr. Sci., 10: 25–29; Paris.
- MEDCOF, J. C. & BOURNE, N. (1964): Causes of mortality of the sea scallop *Placopecten magellanncus*. Proc. natn. Shellfish. Ass., 53: 33–50; Washington.
- MEEK, F. B. (1864): Checklist of the invertebrate fossils of North America: Cretaceous and Jurassic. – Smithson. misc. Collns, 7: 40 pp; Washington.
- MEEK, F. B. (1865): Description of fossils from the auriferous slates of California. – Geol. Surv. Calif., Geology, 1: 477–482; Philadelphia.
- MÉGNIEN, C., MÉGNIEN, F. & TURLAND, M. (1970): Le rècif Oxfordien de l'Yonne et son environment sur la feuille Vermenton. – Bull. Bur. Rech. geol. min. (Sect. 1), 3: 83–115; Paris.
- MELVILLE, R. V. (1956): Stratigraphical palaeontology; ammonites excluded, of the Stowell Park Borehole. – Bull. geol. Surv. Gt. Br., 11: 67–139; London.
- MENEGHINI, G. (1880): Fossili oolitici di Monte Pastello nella provincia di Verone. – Memorie Soc. tosc. Sci. Nat., 4: 336–362; Pisa.
- MENEGHINI, J. (1867–81): Monographie des fossiles du calcaire rouge ammonitique (Lias Supérieur) de Lombardie et de l'Appenin Central. – 242 pp; Milan (Rebeschini).
- MENSINK, H. (1965): Stratigraphie und Paläogeographie des marinen Jura in den nordwestlichen Iberischen Ketten. – Beih. geol. Jb., 44: 55–102; Hannover.
- MOBERG, J. C. (1888): Om Lias I Sydostra Skåne. K. svenska VetenskAkad Handl., 22, Nr. 6: 86 pp; Stockholm.
- MÖRICKE, W. (1894): Versteinerungen des Lias und Unteroolith von Chile. – Neues Jb. Miner. Geol. Paläont. Beilbd, 9: 1–100; Stuttgart.
- MONTAGU, G. (1803): Testacea Britannica. Part l. pp. 1–291; Romsey (Hollis).
- MORBEY, S. J. (1975): The palynostratigraphy of the Rhaetian stage, Upper Triassic, in the Kendelbachgraben, Austria. – Palaeontographica (B), **152**: 1–75; Stuttgart.
- MORRIS, J. & LYCETT, J. (1851–55): A monograph of Mollusca from the Great Oolite. – Palaeontogr. Soc. [Monogr.]: (1), 1851, Univalves: 1–130; (2), 1853, Bivalves: 1–80; (3), 1855, Bivalves: 81–147; London.
- MOUTERDE, R. (1953): Études sur le Lias et le Bajocien des bordures nord et nord-est du massif central Français. – Bull. Servs Carte géol. Fr., 50: 63–521; Paris.
- MULLER, C. F. (1776): Zoologiae Danicae Prodromus, seu Animalium Daniae et Norvegiae Indigenarum, characteres, nomina et synonyma imprimis popularium. – 282 pp; Copenhagen.
- MCLEARN, F. H. (1924): New Pelecypods from the Fernie Formation of the Alberta Jurassic. – Proc. Trans. R. Soc. Can., 18 (Sect. 4): 39–61; Ottawa.
- NEALE, J. W. (1956): Chlamys (Radulopecten) drewtonensis sp. nov. – Proc. Yorks. geol. Soc.. 30: 371–374; Hull.
- NEUMAYR, M. (1871): Die Vertretung der Oxfordgruppe im östlichen Theile der mediteranen Provinz. – Jb. geol. Bundesanst., Wien, 21: 355–378; Wien.

- (1879): Zur Kenntniss der Fauna des Untersten Lias in den Nordalpen. – Abh. geol. Bundesanst., Wien, 7: 1–46; Wien.
- NEWTON, R. B. (1921): On a marine Jurassic fauna from central Arabia. – Annls. Mag. nat. hist. (9), 7: 389–403; London.
- NICOL, D. (1967): Some characteristics of cold-water marine pelecypods. – J. Paleont., 41: 1330–1340; Lawrence, Kansas.
- NICOLIS, E. & PARONA, C. F. (1885): Note stratigrafiche e paleontologiche sul Giura superiore della Provincia di Verona. – Boll. Soc. geol. ital., 4: 1–95; Roma.
- NITZOPOULOS, G. (1974): Faunistisch-ökologische, stratigraphische und sedimentologische Untersuchungen am Schwamm-stotzen-Komplex bei Spielberg am Hahnenkamm. – Stuttg. Beitr. Naturk. (B), Nr. 16: 143 pp; Stuttgart.
- NYST, P. H. (1843): Description des coquilles et des polypiers fossiles des terrains tertiaires de la Belgique. – 697 pp; Bruxelles (Hayez).
- OERTEL, W. (1924): Die Stellung des anstehenden Lias in Mecklenburg. – Neues Jb. Miner. Geol. Paläont., 49: 550–593; Stuttgart.
- OPIN. DECL. INT. COMMN. ZOOL. NOM. (1936): 1 (B), Opinion 126: 469–486; London.
- OPPEL, A. (1853): Der mittlere Lias schwäbens. Jh. Ver. vaterl. Naturk. Wurtt., 10: 92 pp; Stuttgart.
- (1858): Die Juraformation Englands, Frankreichs und des südwestlichen Deutschlands. – 857 pp; Stuttgart (Ebner, Seubert).
- (1866): Über die Zone des Ammonites transversarius. pp 205–318. In: BENECKE. E. W.: Beitrag zur Kenntnis der Jura in Deutsch-Lothringen. – Abh. geol. Spezkarte. Els.-Loth. (N. S.), 1; München.
- ORBIGNY, A. D' (1850): Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonnés. – 1: 394 pp; 2: 428 pp; Paris (Masson).
- PAINE, R. T. (1976): Size limited predation: an observational and experimental approach with the *Mytilus-Pisaster* interaction. – Ecology, 57: 858–873; Durham, N. C.
- PALMER, C. P. (1966a): Note on the fauna of the Margaritatus Clay (Blue Band) in the Domerian of the Dorset coast. – Proc. Dorset. nat. Hist. archaeol. Soc., 87: 67–68; Dorchester.
- (1966b): The fauna of Day's Shell Bed in the Middle Lias of the Dorset coast. – Proc. Dorset. nat. Hist. archaeol. Soc., 87: 69–80; Dorchester.
- PALMER, T. J. (1974): Some palaeo-ecological studies in the M. and U. Bathonian of Central England and N. W. France. – Unpubl. M. S. D. Phil., Univ. Oxford: 279pp.
- — (1979): The Hampen Marly and White Limestone formations: Florida-type carbonate lagoons in the Jurassic of central Eng-land. – Palaeontology, 22: 189–228; London.
- PALMER, T. J. & FURSICH, F. T. (1981): Ecology of sponge reefs from the Middle Jurassic of Normandy. – Palaeontology, 24: 1–23; London.
- PARENT, H. (1940): Faune du Bradfordian et du Cornbrash du Valaury-Saint-Hubert (Var). – C. r. Somm. Séanc. Soc. géol. Fr., Year 1940: 31–32; Paris.
- PARIS, E. T. & RICHARDSON, L. (1916): Some Inferior Oolite Pectinidae. – Q. Jl. geol. Soc. Lond., 71: 521–535; London.
- PARONA, C. F. (1892): Revisione della fauna Liasica di Gozzano in Piemonte. – 59 pp; Torino.
- (1895): Nuove osservazioni sopra la faune e l'eta degli strati con *Posidonomya alpina* nei Sette Comuni. – Palaeontogr. Ital., 1: 1–42; Pisa.
- PERON, M. (1905): Études paléontologiques sur les terrains du département de l'Yonne. – Bull. Soc. Sci. hist. nat. Yonne, 59: 33–266; Auxerre.
- PHILIPPI, E. (1898): Beiträge zur Morphologie und Phylogenie der Lamellibranchier. – Z. dt. geol. Ges., 50: 597–622; Berlin.
- — (1900): Beiträge zur Morphologie und Phylogenie der Lamel- libranchier. 1I. Zur Stammesgeschichte der Pectiniden. – Z. dt. geol. Ges., 52: 64–117; Berlin.
- PHILLIPS, J. (1829): Illustrations of the geology of Yorkshire. 192 pp; York (Wilson). 2nd ed. (1835); York (Murray).
- (1871): Geology of Oxford and the valley of the Thames. 523 pp; Oxford (Clarendon).
- PLOT, R. (1705): The natural history of Oxfordshire (2nd ed.). 356 pp; London (Lichfield).

- POMPECKJ, J. F. (1897): Paläontologische und stratigraphische Notizen aus Anatolien. – Z. dt. geol. Ges., 44: 713–828; Berlin.
- POOLE, E. G. (1979): The Triassic-Jurassic boundary in Great Britain. – Geol. Mag., 116: 303–311; London.
- PREUSCHOFT, H., FRITZ, M., & KRAMER, T. (1975): Beziehungen zwischen mechanischer Beanspruchung und Gestalt bei Wirbellosen: Spannungsanalyse an Muschel-Klappen. – Neues Jb. Geol. Paläont. Abh., 150: 161–181; Stuttgart.
- PYRAH, B. J. (1977): Catalogue of type and figured fossils in the Yorkshire Museum: Part 2. – Proc. Yorks. geol. Soc., 41: 241–260; Hull.
- QUENSTEDT, F. A. (1843): Das Flözgebirge Württembergs. Mit besonderer Rücksicht auf den Jura. – 560 pp; Tübingen (Laupp).
- (1852): Handbuch der Petrefactenkunde. 792 pp; Tübingen (Laupp).
- — (1858): Der Jura. 823 pp; Tübingen (Laupp).
- RAVN, J. P. J. (1910): On Jurassic and Cretaceous fossils from North-East Greenland. – Meddř. Grønland, 45: 437–500; Kjøbenhavn.
- READ, H. H., ROSS, G. & PHEMISTER, J. (1925): The geology of the country around Golspie, Sutherlandshire. – Mem. Geol. Surv. U. K.: 147 pp; London.
- REIF, W.-E. (1978): Plicae and cardinal crura in pectinids: Protective devices against starfish predation? – Neues Jb. Geol. Paläont. Abh., 157: 115–118; Stuttgart.
- REMES, M. (1903): Nachträge zur Fauna von Stramberg. IV. Über Bivalven der Stramberger Schichten. – Beitr. Paläont. Geol. Öst.-Ung., **15**: 185–219; Wien.
- RETOWSKI, O. (1893): Die tithonischen Ablagerungen von Theodosia. – Byull. mosk. Obshch. Ispyt. Prir., Nrs. 2 and 3:95 pp; Moskva.
- RIAZ, A. DE (1900): Note sur l'étage Toarcien de la région lyonnaise et de Saint-Roman-au-Mont d'Or en particulier. – Bull. Soc. géol. Fr. (4), 6: 607–625; Paris.
- RICHARDSON, L. (1907): The Inferior Oolite and contiguous deposits of the Bath-Doulting district. – Q. Jl. geol. Soc., Lond., 63: 383–436; London.
- (1910): The Inferior Oolite and contiguous deposits of the south Cotswolds. – Proc. Cotteswold Nat. Fld. Club, 17: 63–136; Gloucester.
- (1911): Inferior Oolite and contiguous deposits of the Chipping Norton district. – Proc. Cotteswold Nat. Fld. Club, 17: 195–231; Gloucester.
- (1916): The Inferior Oolite and contiguous deposits of the Doulting-Milborne Port district (Somerset). – Q. Jl. geol. Soc. Lond., 71: 473–519; London.
- (1927): The inferior and contiguous deposits of the Burton Bradstock-Broadwindsor district, Dorset. – Proc. Cotteswold Nat. Fld. Club, 23: 149–185; Gloucester.
- RICHE, A. (1893): Étude stratigraphique sur le Jurassique inférieur du Jura méridional. – Annls Univ. Lyon, 6, Pt. 3: 396 pp; Lyon.
- ROEDER, H. A. (1882): Beiträge zur Kenntnis des Terrain à Chailles und seiner Zweischaler in der Umgegend von Pfirt in Oberelsaß. – 110 pp; Strasbourg (Schultz).
- ROEMER, F. A. (1836): Die Versteinerungen des Norddeutschen Oolithen-Gebirges. – 218 pp; Hannover (Hahn). Ein Nachtrag (1839): 59 pp.
- ROLLIER, L. (1911): Les facies du Dogger ou Oolithique dans le Jura et les régions voisines. – Mem. Fondation Schnyder, 352 pp; Zürich (Georg).
- (1915): Fossiles nouveaux ou peu connus des terrains secondaires (Mésozoiques) du Jura et des contrées environnantes, 5.
 – Abh. schweiz. paläont. Ges., 41: 447–500; Genève.
- ROMAN, F. (1926): Geologie Lyonnaise. –356 pp; Paris (Presse Univ. France).
- (1950): V1. Le Bas-Vivarais. Actual. scient. ind., Nr. 1090: 150 pp; Paris.
- ROSENKRANTZ, A. (1934): The Lower Jurassic rocks of East Greenland. – Part I. – Meddr. Grønland, 110, Nr. 1: 122 pp; Kjøbenhavn.
- (1942): The Lower Jurassic rocks of East Greenland. Part 11. The Mesozoic sediments of the Kap Hope area, southern Liverpool Land. – Meddr. Grønland, 110, Nr. 2: 56 pp; Kjøbenhavn.

- ROSSI RONCHETTI, C. & FANTINI SESTINI, N. (1961): La fauna Giurassica di Karkar (Afghanistan). – Riv. ital. Paleont. Stratigr., 67: 103–152; Milano.
- ROTHPLETZ, A. (1886): Geologisch-palaeontologische Monographie der Vilser Alpen, mit besonderer Berücksichtigung der Brachiopoden-Systematik. – Palaeontographica, 33: 1–180; Stuttgart.
- RUDWICK, M. J. S. (1964): The inference of function from structure in fossils. – Br. J. Phil. Sci., 15: 27–40; Edinburgh.
- (1970): Living and fossil brachiopods. 199 pp; London (Hutchinson).
- RUSSELL, P. J. C. (1972): A significance in the number of ribs in the shells of two closely related *Cardium* species. – J. Conch., Lond., 27: 401–409; London.
- SACCO, F. (1886): Studio geo-paleontologico sul Lias dell'alta valle della Stura di Cuneo. – Boll. R. Comm. geol. ital., 17: 6–27; Roma.
- SALIN, E. (1935): Monographie des calcaires du Barrois. Bull. Soc. géol. Fr. (5), 5: 117–165; Paris.
- SANDERS, H. L. (1968): Marine benthic diversity: a comparative study. Am. Nat., 102: 243–282; Lancaster, PA.
- (1969): Benthic marine diversity and the stability-time hypothesis. Brookhaven Symp. Biol., 22: 71–80; Upton, N. Y.
- SAUVAGE, C. & BUVIGNIER, A. (1842): Statistique minéralogique et géologique du département des Ardennes. – 554 pp; Mézières (Trécourt).
- SAUVAGE, H. E. & RIGAUN, E. (1872): Description d'espèces nouvelles des terrains jurassiques de Boulogne-sur-Mer (Pas de Calais). – J. Conch., Paris, 20: 165–187; Paris.
- SCHAFHAUTL, K. (1851): Über einige neue Petrefakten des Südbayern'schen Vorgebirges. – Neues Jb. Miner. Geol. Paläont., Year 1851: 407–421; Stuttgart.
- SCHINDEL, D. E. & GOULD, S. J. (1977): Biological interaction between fossil species: character displacement in Bermudian land snails. – Paleobiology, 3: 259–269; Lancaster, PA.
- SCHLIPPE, A. O. (1888): Die Fauna des Bathonien im ober-rheinischen Tieflande. – Abh. geol. SpezKarte. Els.-Loth., 4: 266 pp; Strassburg.
- SCHLONBACH, U. (1863): Ueber den Eisenstein des mittleren Lias im nord-westlichen Deutschland, mit Berücksichtigung der älteren und jüngeren Lias-Schichten. – Zeit. dt. geol. Ges., 15: 465–566; Berlin.
- SCHLOSSER, M. (1911): Die Fauna des Lias und Dogger in Franken und der Oberpfalz. – Z. dt. geol. Ges., 53: 513–569; Berlin.
- SCHLOTHEIM, E. F. VON (1813): Beiträge zur Natur-geschichte der Versteinerungen in geognostischer Hinsicht. – Min. Taschenbuch, 7: 3–134; Frankfurt am Main.
- (1820): Die Petrefactenkunde. 437 pp; Gothenburg (Bekker).
- SEEBACH, K. VON (1864): Der Hannoversche Jura. 170 pp; Berlin (Hertz).
- SEILACHER, A. (1972): Divaricate patterns in pelecypod shells. Lethaia, 5: 325–343; Oslo.
- SELLWOOD, B. W. (1972): Regional environmental changes across a Lower Jurassic stage boundary in Britain. – Palaentology, 15: 125–157; London.
- (1978): Jurassic: pp. 204–279 In: MCKERROW, W. S. (ed.): The Ecology of Fossils; London (Duckworth).
- SELLWOOD, B. W. & MCKERROW, W. S. (1974): Depositional environments of the lower part of the Great Oolite Group of Oxfordshire and North Gloucestershire. – Proc. Geol. Ass., 85: 189–210; London.
- SEMENOW, B. (1896): Faune des dépôts jurassiques de Mangychlak et de Tonar Kyr. – Trudy imp. S-Peterb. Obshch. Estest., 23: 9–19; S. Peterburg.
- SHARPE, D. (1850): On the secondary district of Portugal which lies on the north of the Tagus. – Q. Jl. geol. Soc. Lond., 6: 135–200; London.
- SIEMIRADZKI, J. VON (1893): Der obere Jura in Polen und seine Fauna. – Z. dt. geol. Ges., 45: 103–144; Berlin.
- SIMIONESCU, 1. (1898): Über die Kelloway-fauna von Valea Lupulei in den Südkarpathen Rumäniens. – Verh. K. K. geol. Reichsanst., Wien, Nr. 18: 410–415; Wien.

- (1899): Studii geologice si paleontologice din Carpatii Sudici.
 III. Fauna Calloviana din Valea Lupului (Rucar). Publs Fond. Adamachi Acad. Româna, 1: 189–214; Bucuresti.
- — (1910): Studii geologice si paleontologice din Dobrogea. II. Lamellibranchiatele, Gastropodele, Brachiopodele si Echino- dermele din pàturile Jurasice dela Hârsova. – Acad. Romana Publs., Nr. 25: 109 pp; Bucuresti.
- SIMPSON, M. (1884): The fossils of the Yorkshire Lias. 256pp; Whitby (Forth).
- SKWARKO, S. K. (1974): Jurassic fossils of Western Australia. Bull. Bur. Miner. Resour. Geol. Geophys. Aust., 150: 43–56; Melbourne.
- SMITH, A. G. & BRIDEN, J. C. (1977): Mesozoic and Cenozoic palaeocontinental maps. – 63 pp; Cambridge, U. K. (Univ. Press).
- SOEMODIHARDJO, S. (1974): Aspects of the biology of *Chlamys opercularis* (L.) (Bivalvia) with comparative notes on four allied species. – Unpubl. M. S. D. Phil., Univ. Liverpool.
- SOKOLOV, D. & BODYLEVSKY, W. (1931): Jura- und Kreide-faunen von Spitzbergen. – Skr. Svalbard Ishavet, Nr. 35: 151 pp; Oslo.
- SOWERBY, J. (1812–22): The Mineral Conchology of Great Britain. –
 1 (1), 1812: 9–32; (2), 1813: 33–96; (3), 1814: 97–178; (4), 1815: 179–236. 2 (1), 1815: 1–28; (2), 1816: 29–116; (3), 1817: 117–194; (4), 1818: 195–239. 3 (1), 1818: 1–40; (2), 1819: 41–98; (3), 1820: 99–126; (4), 1821: 127–186. 4 (1), 1821: 1–16; (2), 1822: 17–104; London (Meredith).
- SOWERBY, J. DE C. (1822a-46a): The Mineral Conchology of Great Britain. - 4 (3), 1822: 105-114; (4), 1823: 115-151. 5 (1), 1823: 1-64; (2), 1824: 65-138; (3), 1825: 139-171. 6 (1), 1826: 1-86; (2), 1827: 87-156; (3), 1828: 157-200; (4), 1829: 201-235; (Preface to the general indexes and systematic index to the six volumes), 1835: 239-250; (Alphabetic index to volumes 1-6), 1840; 1-11. 7 (1), 1840?: 1-8; (2), 1841: 9-16; (3), 1843: 17-24; (4), 1844: 25-56; (5), 1846: 57-80; London (Meredith).
- SOWERBY, J. DE C. (1840b): Description of fossils from the Upper Secondary Formation of Cutch collected by C. W. GRANT. – Trans. Geol. Soc. Lond. (2), 5: p. 328; London.
- SPATH, L. F. (1932): The invertebrate faunas of the Bathonian-Callovian deposits of Jameson Land (East Greenland). – Meddr. Grønland, 87, Nr. 7: 158 pp; Kjøbenhavn.
- (1935): The Upper Jurassic invertebrate faunas of Cape Leslie, Milne Land, J. Oxfordian and Lower Kimmeridgian. – Meddr. Grønland, 99, Nr. 2: 82 pp; Kjøbenhavn.
- (1936): The Upper Jurassic invertebrate faunas of Cape Leslie, Milne Land. 1I. Upper Kimmeridgian and Portlandian. – Meddr. Grønland, 99, Nr. 3: 180 pp; Kjøbenhavn.
- STAESCHE, K. VON (1926): Die Pectiniden des Schwäbischen Jura. Geol. paläont. Abh. (N. S.), 15: 136 pp; Jena.
- STANLEY, S. M. (1970): Relation of shell form to life habits in the Bivalvia (Mollusca). – Mem. geol. Soc. Am., Nr. 125: 296pp; Washington.
- STASEK, C. R. (1963): Geometrical form and gnomonic growth in the biavalved Mollusca. – J. Morph., 112: 215–231; Philadelphia.
- STEFANINI, G. (1925): Description of fossils from South Arabia and British Somaliland. Appendix 1: pp. 143–221 – 1n: LITTLE, O. H.: The Geography and Geology of Makalla (South Arabia); Cairo (Government Press).
- (1939): Molluschi del Giuralias della Somalia. Gastropodi e Lamellibranchi. – Palaeontogr. ital., 32: 103–270; Pisa.
- STEINMANN, G. (1881): Zur Kenntnis der Jura- und Kreideformation von Caracoles (Bolivia). – Neues Jb. Miner. Geol. Paläont. Beilbd, 1: 239–301; Stuttgart.
- STOLICZKA, F. (1861): Über die Gastropoden und Acephalen der Hierlatz-Schichten. – Sber. Akad. Wiss. Wien, 43: 157–204; Wien.
- — (1870–71): The Pelecypoda, with a review of all known genera of this class, fossil and Recent: 537 pp. – In: The Cretaceous faunas of India. – Mem. geol. Surv. India Palaeont. indica, 3: Calcutta.
- STOLL, E. (1934): Die Brachiopoden und Mollusken der pommerschen Doggergeschiebe. – Abh. geol.-paleont. Inst. Greifswald, 13: 1–62; Greifswald.
- STOLL, N. R., DOLLFUS, R. PH., FOREST, J., RILEY, N. D., SABROS-KY, C. W., WRIGHT, C. W. & MELVILLE, R. V. (eds.). (1964): International code of Zoological Nomenclature adopted by

the XVth International Congress of Zoology. – 176 pp; Bungay, Suffolk (Clay).

- STOPPANI, A. (1860): Geologie et Paléontologie des couches à Avicula contorta en Lombardie. – Paléont. Lombardie, 3: 267 pp; Milano.
- SYKES, R. (1975): Facies and faunal analysis of the Callovian and Oxfordian stages (M. and Up. Jurassic) in northern Scotland and east Greenland. – Unpubl. M. S. D. Phil., Univ. Oxford: 312 pp.
- SYLVESTER-BRADLEY, P. C. (1968): The Inferior Oolite Series: pp. 211–226 – In: SYLVESTER-BRADLEY, P. C. and FORD, T.: The Geology of the East Midlands; Leicester (Univ. Press).
- TALBOT, M. R. (1973): Major sedimentary cycles in the Corallian Beds (Oxfordian) of southern England. – Palaeogeogr. Palaeoclimatol. Palaeoecol., 14: 293–313; Amsterdam.
- TAMURA, M. (1959): Taxodonta and Isodonta from the Upper Jurassic Sakomoto Formation in Central Kyushu, Japan. – Trans. Proc. palaeont., Soc. Japan (N. S.), Nr. 34: 53–65; Tokyo.
- (1973): Two species of Lower Cretaceous Parvanussium from Kyushu, Japan and Sarawak, Borneo: pp. 119–124.– In: KOBAYAYASHI, T. & TORIYAMA, R. (eds.): Geology and Palaeontology of Southeast Asia (10); Tokyo.
- TATE, R. & BLAKE, J. F. (1876): The Yorkshire Lias. 475 pp; London (Van Voorst).
- TAUBER, C. A. & TAUBER, M. J. (1977a): Sympatric speciation based on allelic changes at 3 loci: evidence from natural populations in two habits. – Science, N. Y., 197: 1298–1299; Washington.
- (1977b): A genetic model for sympatric speciation through habitat diversification and seasonal isolation. – Nature, Lond., 268: 702–705; London.
- TAUSCH VON GLOECKELSTHURN, L. (1890): Zur Kenntnis der Fauna der Grauen Kalke der Süd-Alpen. – Abh. geol. Bundesanst., Wien: 15, 1–40; Wien.
- TAWNEY, E. B. (1866): On the western limit of the Rhaetic Beds in South Wales and on the position of the Sutton Stone. – Q. Jl. geol. Soc. Lond., 12: 69–93; London.
- TAYLOR, J. D., KENNEDY, W. J. & HALL, A. (1969): The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. – Bull. Br. Mus. nat. Hist. (Zool.), Supp. 3: 125 pp; London.
- TEBBLE, N. (1966): British Bivalve seashells. 212 pp; Edinburgh (H. M. S. O.).
- TERQUEM, M. O. (1855): Paléontologie de l'étage inférieur de la formation Liasique de la Province de Luxembourg, Grand-Duché (Hollande) et de Hettange. – Mém. Soc. géol. Fr. (2), 3: 219–343; Paris.
- TERQUEM, M. O. & JOURDY, E. (1869): Monographie de l'étage Bathonien dans le département de la Moselle. – Mém. Soc. géol. Fr. (2), 9: 1–175; Paris.
- TERQUEM, M. O. & PIETTE, E. (1865): Le Lias Inférieur de l'est de la France. – Mém. Soc. géol. Fr. (2), 8: 1–175; Paris.
- THAYER, C. W. (1972): Adaptive features of swimming monomyarian bivalves. – Forma et Functio, 5: 1–32; Oxford.
- (1975): Strength of pedicle attachment in articulate brachiopods: ecologic and palaeoecologic significance. – Paleobiology, 1: 388–399; Lancaster, PA.
- THOMAS, G. E. & GRUFYDD, LL. D. (1976): The types of escape reactions elicited in the scallop *Pecten maximus* by selected seastar species. – Mar. Biol., 10: 87–93; New York.
- THURMANN, J. (1833): Essai sur les soulèvements jurassiques du Porrentruy. – Mém. Soc. Hist. nat. Strasbourg, 1, Book 2, Pt. 2: 1–85; Strasbourg.
- THURMANN, J. & ÉTALLON, A. (1862): Lethea Bruntrutana. Neue Denkschr. allg. schweiz. Ges. ges. Naturw., 19: 146–353; Zürich.
- TIETZE, E. (1872): Geologische und paläontologische Mittheilungen aus dem südlichen Theil des Banater Gebirgsstockes. – Jb. geol. Bundesanst., Wien, 22: 34–142; Wien.
- TILMANN, N. (1917): Die Fauna des unteren und mittleren Lias in Nord- und Mittel-Peru. – Neues Jb. Miner. Geol. Paläont. Beilbd, 41: 628–712; Stuttgart.
- TIMOSHENKO, S. & WOINOWSKY-KRIEGER, S. (1959): Theory of plates and shells (2nd ed.). – Eng. Soc. [Monogr.]: 580 pp; New York.

- TONI, A. DE (1912): La fauna Liasica di Vedano (Belluno). Parte seconda: Molluschi. – Abh. schweiz. paläont. Ges., 38: 33–51; Genève.
- TORNQUIST, A. (1898): Der Dogger am Espinazito-Paß, nebst einer Zusammenstellung der jetzigen Kenntnisse von der argentinischen Juraformation. – Paläont. Abh. (N. S.), 4, Nr. 2:72 pp; Berlin.
- TORRENS, H. S. (1968): The Great Oolite Series: pp.227–263.– In: SYLVESTER-BRADLEY, P. C. and FORD, T.: The Geology of the East Midlands; Leicester (Univ. Press).
- TOWNSON, W. G. (1971): A facies analysis of the Portland Beds. A description and interpreted environmental history of the Portland Group in England and France with particular emphasis on the exposures in Dorset. – Unpubl. M. S. D. Phil. Univ. Oxford. 2 vols: 181 and 284pp.
- (1975): Lithostratigraphy and deposition of the type Portlandian. – Jl. geol. Soc. Lond., 131: 619–638; London.
- TRAUTH, F. (1909): Die Grestener Schichten der österreichischen Voralpen und ihre Fauna. – Beitr. Paläont. Geol. Öst.-Ung., 22: 1–142; Wien.
- TRAUTSCHOLD, H. (1861): Der Moskauer Jura, verglichen mit dem West-Europäischen. – Z. dt. geol. Ges., 13: 361–452; Berlin.
- (1862): Recherches géologiques aux environs de Moscou. Fossiles de Kharachova et Supplement. Byull. mosk. Obshch. Ispÿt. Prir., Year 1861: 1–11; Moscou.
- TROEDSSON, G. (1951): On the Höganäs series of Sweden (Rhaeto-Lias). – Skr. miner.-o. paleont.-geol. Inst. Lund, Nr. 7: 1–269; Lund.
- TURTON, W. (1822): Conchylia Insularum Britanicarum. 279 pp; Exeter (Cullum).
- TZANKOV, V. & BONCEV, E. (1932): La faune liasique de Kalotina-Bulgarie de l'Ouest.-Spis. bulg. geol. Drush., 4: 221–244; Sofiya.
- UHLIG, V. (1884): Ueber Jurafossilien aus Serbien. Verh. K. K. geol. Reichsanst., Wien. Year 1884: 178–186; Wien.
- URLICHS, M. (1966): Zur Fossilführung und Genese des Feuerlettens, der Rät-Lias-Grenzschichten und des unteren Lias bei Nürnberg. – Erlanger Geol. Abh., Nr. 64: 42 pp; Erlangen.
- VACEK, M. (1886): Über die Fauna der Oolithe von Cap S. Vigilio verbunden mit einer Studie über die obere Liasgrenze. – Abh. geol. Bundesanst., Wien, Year 1886: 57–212; Wien.
- VECCHIA, O. (1945): Una fauna retico-liassica della sponda occidentale Sebina (Bergamo). – Pubbl. Ist. Geol. Paleont. Geogr. fis. R. Univ. Milano (P), Nr. 41: 1–27; Milano.
- VERMEIJ, G. J. (1977): The Mesozoic marine revolution: evidence from snails, predators and grazers. – Paleobiology, 3: 245–258; Lancaster, PA.
- VERNEUIL, M. DE & COLLOMB, E. (1852): Coup d'oeil sur la constitution géologique de quelques provinces de l'Espagne. – Bull. Soc. géol. Fr. (2), 10: 61–147; Paris.
- VERRILL, A. E. (1897): A study of the family Pectinidae, with a revision of the genera and subgenera. – Trans. Conn. Acad. Arts Sci., 10: 41–96; New Haven.
- VETTERS, H. (1905): Die Fauna der Juraklippen zwischen Donau und Thaya. – Beitr. Paläont. Geol. Öst.-Ung., 17: 233–259; Wien.
- WAAGEN, W. (1867): Ueber die Zone des Ammonites Sowerbyi. pp. 507-668. In: BENECKE, E. W. Beitrag zur Kenntnis der Jura in Deutsch-Lothringen. – Abh. geol. SpezKarte. Els.-Loth. (N. S.), 1; München.
- WADDINGTON, C. H. (1957): The strategy of the genes. 262 pp; London (Allen, Unwin).
- WAINWRIGHT, S. A., BIGGS, W. D., CURREY, J. D. & GOSLINE, J. M. (1976): Mechanical design in organisms. – 423 pp; London (Arnold).
- WALLER, T. R. (1969): The evolution of the Argopecten gibbus stock (Mollusca: Bivalvia), with emphasis on the Tertiary and Quaternary species of eastern North America. – Paleont. Soc. Mem. 3 (J. Paleont. 43, Suppl.): 125 pp; Lawrence.
- (1971): The glass scallop Propeamussium, a living relict of the past. – Ann. Rep. Am. malac. Un., Year 1970: 5–7; ?Buffalo.
- (1972a): The functional significance of some shell microstructures in the Pectinacea. 24th Int. geol. Congr. (Sect. 7), Nr. 24: 48–56; Montreal.
- (1972b): The Pectinidae of Eniwetok Atoll, Marshall Islands.
 Veliger, 14: 221–264; Berkeley.

- (1978): Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). – Phil. Trans. R. Soc. (B), 284: 345–365; London.
- WANDEL, G. (1936): Beiträge zur Kenntnis der jurassischen Molluskenfauna von Misol, Ost-Celebes, Buton, Serran und Jamdena. – Neues Jb. Miner. Geol. Paläont. Beilbd (B), 75: 447–526; Stuttgart.
- WANNIER, M. & PANCHAUD, R. (1977): Catalogue des fossiles originaux conservés dans les collections de l'École cantonale de Porrentruy et du Progymnase de Delémont. – Eclog. geol. Helv., 70: 919–932; Lausanne.
- WEIR, J. (1938): The Jurassic faunas of Kenya with descriptions of some Brachiopoda and Mollusca. – Monogr. geol. Dep. Hunter. Mus., Nr. 5: 17–60; Glasgow.
- WELLNHOFER, P. (1964): Zur Pelecypodenfauna der Neuburger Bankkalke (Mittel-Tithon). – Abh. bayer. Akad. Wiss. (N. S.), Nr. 119: 143 pp; München.
- WENDT, J. (1963): Stratigraphisch-paläontologische Untersuchungen im Dogger Westsiziliens. – Boll. Soc. paleont. ital, 2: 57–145; Modena.
- (1971): Genese und Fauna submariner sedimentärer Spaltenfüllungen im Mediterranen-Jura. – Palaeontographica (A), 136: 122–192; Stuttgart.
- WHIDBORNE, G. F. (1883): Notes on some fossils, chiefly Mollusca, from the Inferior Oolite, – Q. Jl. geol. Soc. Lond., 39: 487–540; London.
- WIBORG, K. F. (1963): Some observations of the Iceland scallop Chlamys islandica (MULLER) in Norwegian waters. – Fisk-Dir. Skr. Serie Havundersøkelser, 13: 38–53; Bergen.
- WILSON, R. C. L. (1968): Upper Oxfordian palaeogeography of southern England. – Palaeogeogr. Palaeoclimatol. Palaeoecol., 4: 5–28; Amsterdam.
- WINKLER, G. G. (1861): Der Oberkeuper nach Studien in den bayrischen Alpen. – Z. dt. geol. Ges., 13: 459–521; Berlin.
- — (1886): Neue Nachweise über den untern Lias in den bairi- schen Alpen. – Neues Jb. Miner. Geol. Paläont., 2: 1–34; Stuttgart.
- WITCHELL, E. (1880): Notes on a section of Stroud Hill and the Upper Ragstone Beds of the Cotteswolds. – Proc. Cotteswold Nat. Fld. Club, Year 1880; 117–135; Gloucester.
- WOBBER, F. J. (1968): A faunal analysis of the Lias (Lower Jurassic) of South Wales (Great Britain). – Palaeogeogr. Palaeoclimatol. Palaeoecol., 5: 269–308; Amsterdam.
- WOODWARD, H. B. (1893): The Jurassic rocks of Britain. Vol. III. The Lias of England and Wales (Yorkshire excepted). – Mem. geol. Surv. U. K.: 399 pp; London.
- (1894): The Jurassic rocks of Britain. Vol. IV. The Lower Oolitic rocks of England (Yorkshire excepted). – Mem. geol. Surv. U. K.: 628 pp; London.
- WORSSAM, B. C. & IVIMEY-COOK, H. C. (1971): The stratigraphy of the Geological Survey borehole at Warlingham, Surrey. – Bull. geol. Surv. Gt. Br., Nr. 36: 111pp; London.
- WRIGHT, J. K. (1972): The stratigraphy of the Yorkshire Corallian. Proc. Yorks. geol. Soc., 39: 225–266; Hull.
- (1977): The Cornbrash Formation (Callovian) in North Yorkshire and Cleveland. – Proc. Yorks. geol. Soc., 41: 325–346; Hull.
- WRIGHT, R. P. (1974): Jurassic bivalves from Wyoming and South Dakota: A study of feeding relationships. – J. Paleont. 48: 425–433; Lawrence.
- YAMANI, S.-A. (1975): Bivalven-fauna der Korallenkalke von Laisakker bei Neuburg a. d. Donau. Unteres Tithonium, Bayern. – Palaeontographica (A), **149:** 31–118; Stuttgart.
- YIN, T.-H. (1931): Étude de la faune Tithonique coralligène du Gard et de l'Hérault. – Trav. Lab. Géol. Univ. Lyon, 17, Nr. 14: 20 pp; Lyon.
- YONGE, C. M. (1951): Observations on *Hinnites multirugosus*. Studies on Pacific coast mollusks. III. – Univ. Calif. Publs. Zool., 55: 409–420; Berkeley.
- (1967): Observations on *Pedum spondyloidem* (CHEMNITZ) GMELIN, a scallop associated with reef-building corals. – Proc. malac. Soc. Lond., 37: 311–323; London.
- YOUNG, G. & BIRD, J. (1822): A geological survey of the Yorkshire coast. - 336 pp; Whitby (Clark). 2nd. ed. (1828): 364 pp.

ZAKHAROV, V. A. (1966): Late Jurassic and Cretaceous bivalve molluscs of northern Siberia. – 110 pp; Moskva (Nauka). ZAKHAROV, V. A. & MESEZNIKOV, M. S. (1974): The Volgian stage

of the subarctic Urals. – 176 pp; Moskva (Nauka).

ZIETEN, C. H. VON (1830–33): Die Versteinerungen Württembergs. – (1), 1830: 1–16; (2), 1831: 17–32; (3), 1832: 33–64; (4), 1833: 65–96; Stuttgart.

APPENDIX I

Species described from the European Jurassic but not discussed in the systematic section of this work (see p. 17)

Pecten Insularum D'ORBIGNY 1850 P. nudus BUVIGNIER 1852 P. Kralikii Contejean 1859 P. Jarnacensis COQUAND 1860 P. delessei Étallon in Thurmann and Étallon 1862 P. pauciplicatus SCHLÖNBACH 1863 P. mica DUMORTIER 1869 P. Stoliczkai GEMMELLARO 1874 P. acrorysus GEMMELLARO and DI BLASI 1874 P. billiemensis GEMMELLARO and DI BLASI 1874 P. diplopsides GEMMELLARO and DI BLASI 1874 P. grammoprotticus GEMMELLARO and DI BLASI 1874 P. nebrodensis GEMMELLARO and DI BLASI 1874 P. oppeli GEMMELLARO and DI BLASI 1874 P. polyzonites GEMMELLARO and DI BLASI 1874 P. siculus GEMMELLARO and DI BLASI 1874 P. zitteli GEMMELLARO and DI BLASI 1874 P. (Amusium) cryptozonus Gemmellaro and Di Blass in Gemmellaro 1878 P. (A.) megalotus GEMMELLARO and DI BLASI in GEMMELLARO 1878 P. clare rugatus BOEHM 1883 P. fraudator BOEHM 1883 P. spitzbergensis LUNDGREN 1883 P. indisus DE GREGORIO 1886b P. permitinus DE GREGORIO 1886b P. supradubius DE GREGORIO 1886b P. leucus DE GREGORIO 1886d P. Zwingensis DE LORIOL 1895 Chlamys meriani GREPPIN 1899 Ch. peticlerci GREPPIN 1899 P. lima Fucini 1906 Ch. janiroides COSSMANN 1907a P. polycyclus BLASCHKE 1911 P. (Entolium) Beneckei ROLLIER 1911 P. (Neithea ?) Rollieri Cossmann 1916 P. Nalivinki BORISSIAK and IVANOFF 1917 P. Borissiaki KHUDYAEV 1928

APPENDIX II

Derivation of I50 Values

The moment of inertia (I $[\lambda_{/2}]$) for a half wavelength of any given sinusoidal corrugation can be calculated using the following formula from TIMOSHENKO and WOINOWSKY-KRIEGER (1959): –

$$[\lambda_{/2}] = \frac{f^2 h}{2} \qquad 1 - \frac{0.81}{1 + 2.5} \left(\frac{f}{21}\right)^2$$

Where
$$f = amplitude (in mm.)$$

 $h = thickness of material (in mm.)$
 $l = \frac{\lambda}{2} (in mm.)$

Multiplication by $\frac{100}{\lambda}$ yields a value for a 50 mm length of corrugated section (I₅₀).

In text fig. 8 the author has resolved into lines of equal 1_{50} the results of calculations within the ranges: amplitude 0–5 mm, wavelength 1–40 mm, thickness of material 0.1–5 mm.